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Abstract 

Poorman, David Paul (M.S. Aerospace Engineering Sciences) 

State Estimation for Autopilot Control of Small Unmanned Aerial Vehicles in Windy Conditions 

Thesis directed by Professor Dale A. Lawrence 

The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing.  This is 

largely due to the proliferation of inexpensive sensors and the increase in capability of small computers 

that has stemmed from the personal electronic device market.  Methods for performing accurate state 

estimation for large scale aircraft have been well known and understood for decades, which usually 

involve a complex array of expensive high accuracy sensors.  Performing accurate state estimation for 

small unmanned aircraft is a newer area of study and often involves adapting known state estimation 

methods to small UAVs.  State estimation for small UAVs can be more difficult than state estimation for 

larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs 

are more susceptible to wind than large aircraft.  The purpose of this research is to evaluate the ability 

of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft 

that are necessary for autopilot control of the aircraft in a Dryden wind field.  The research begins by 

showing which aircraft states are necessary for autopilot control in Dryden wind.  Then two state 

estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced.  The 

first method uses assumptions on aircraft motion to directly solve for attitude information and smooth 

GPS data, while the second method integrates sensor data to propagate estimates between GPS 

measurements and then corrects those estimates with GPS information.  The performance of both 

methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, 

and in a wings level ascent.  It is shown that in zero wind, the first method produces significant steady 

state attitude errors in both a coordinated turn and in a wings level ascent.  In Dryden wind, it produces 
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large noise on the estimates for its attitude states, and has a non-zero mean error that increases when 

gyro bias is increased.  The second method is shown to not exhibit any steady state error in the tested 

scenarios that is inherent to its design.  The second method can correct for attitude errors that arise 

from both integration error and gyro bias states, but it suffers from lack of attitude error observability.  

The attitude errors are shown to be more observable in wind, but increased integration error in wind 

outweighs the increase in attitude corrections that such increased observability brings, resulting in 

larger attitude errors in wind.  Overall, this work highlights many technical deficiencies of both of these 

methods of state estimation that could be improved upon in the future to enhance state estimation for 

small UAVs in windy conditions.
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1 Introduction 

In all fields of aviation, from large commercial aircraft and military fighters to small scale Unmanned 

Aerial Vehicles (UAVs), accurate state estimation is a critical part of an aircraft’s control system that is 

often taken for granted or simply overlooked.  In large expensive aircraft like airliners or military 

fighters, the methods of obtaining accurate state information are well known and usually involve a 

complex array of numerous sensors to get the information [1].  However, today state estimation of small 

UAVs is at least as much of a topic of concern as the design of a controller.  State estimation of small 

UAVs is a newer area of study and can in some ways be more difficult to implement than state 

estimation for large complex aircraft. This is due to two main aspects of small UAVs. 

First, large aircraft employ a sophisticated array of air data sensors to obtain detailed information about 

the airflow around the aircraft at high frequencies.  They use this information combined with 

specialized, high-precision, and often expensive Inertial Measurement Units (IMUs), Global Positioning 

System (GPS) receivers, and other inertial sensors to accurately estimate vehicle states.  Unfortunately, 

small UAVs can typically only support a limited sensor suite due to the size, weight, and cost of a large 

number of sophisticated sensors.  Thus, state estimation has to be done with both fewer and lower cost 

sensors than is typically done on large aircraft.  This means that the algorithms used for state estimation 

must be re-assessed before they are applied to small UAVs. 

Second, the effects of wind on the motion of a small UAV is much greater than on large aircraft.  

Reference [2] shows that as the scale of an aircraft shrinks, the aircraft is increasingly subject to 

disturbances caused by wind and turbulence.   For example, it is not atypical for the wind speeds 

experienced by small aircraft to be 50% of their total airspeed.  That is almost never the case on large 

aircraft.  Many techniques for estimating small UAV states during zero or steady wind have been 
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developed and widely published, such as in [3], [4], [5], and [6].  These techniques generally work well 

for their designed purpose of zero or steady wind.  However, in practice, if highly variable, high 

frequency gusty wind is encountered, these methods can produce significant amounts of error between 

the estimated value of the states and the true value of the states.  If this error is large enough, 

depending on the design or the aircraft’s controller, this can start unstable behavior in both the 

estimator and controller, and cause the aircraft to crash. 

The purpose of this research is to assess the previously unassessed effectiveness of existing methods for 

state estimation for small UAVs in highly variable windy conditions. There are two common methods of 

state estimation that are used today by small UAVs.   This work simulates both of these methods in a 

MATLAB®/Simulink® aerodynamic model under different benchmark maneuvers in varying wind 

strengths to assess their performance with and without wind to find and analyze the reasons for the 

observed behavior of the state estimate errors in wind.  The contributions of this work are detailed 

understandings of why these methods of state estimation undergo their observed behavior in wind so 

that these estimators can be improved upon in the future to improve the accuracy of state estimation 

for small UAVs in wind. 

The first method that is analyzed makes assumptions about the acceleration and velocity of the aircraft 

in order to measure attitude and then uses this attitude to smooth GPS data to get translational 

information [4].  This work addresses these assumptions with and without wind present in order to 

understand how wind affects this state estimation method.  The second method that is analyzed does 

not make assumptions on the acceleration or velocity of the aircraft, and instead integrates upon a-

priori knowledge of attitude and translation states using gyro and accelerometer sensor data to update 

the attitude and translation estimates [7]. It then corrects these integrated attitude and translation 

estimates with GPS provided position and velocity.  The effectiveness of this method’s ability to correct 
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both the translational states and the attitude states will be heavily scrutinized with and without wind 

present so that the change in the observability of the IMU error between zero wind and wind can be 

assessed.  This detailed analysis of the change in performance of both of these methods when wind is 

added will provide the insights that are required to improve upon these existing methods in the future. 
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2 Nomenclature 

𝐵  Designates the aircraft body frame.  Always used as a subscript or superscript. 

[𝑨]𝐵   Designates the vector 𝑨 written in aircraft body 𝐵 frame components 

𝑁  Designates the inertial North-East-Down (N-E-D) earth-fixed frame.  Earth-fixed is considered 

the inertial reference unless explicitly stated otherwise. 

[𝑨]𝑁   Designates the vector 𝑨 written in inertial 𝑁 frame components. 

𝑝𝑛  Inertial Earth position towards North, origin at simulation initial position 

𝑝𝑒   Inertial Earth position towards East, origin at simulation initial position 

𝑝𝑑 Negative Earth relative altitude.  Zero altitude is ground level. 

𝒑𝐵/𝑁 Vector of the position of the aircraft body frame 𝐵 relative to the inertial Earth 𝑁 frame. 

ℎ Height of the aircraft above ground level.  Negative of 𝑝𝑑. 

𝑢 Component of inertial velocity vector 𝑽𝑩/𝑵 along the X axis of the aircraft. 

𝑣 Component of inertial velocity vector 𝑽𝑩/𝑵 along the Y axis of the aircraft. 

𝑤 Component of inertial velocity vector 𝑽𝑩/𝑵 along the Z axis of the aircraft. 

𝑽𝐵/𝑁 The inertial velocity vector.  The velocity of the aircraft body frame 𝐵 relative to the inertial 

Earth 𝑁 frame. 

𝜙  Roll angle in degrees.  Third Euler angle. 

𝜃  Pitch angle in degrees.  Second Euler angle. 

𝜓  Yaw angle in degrees.  First Euler angle. 

𝝍  Vector of Euler angle components, relating the 𝑁 frame to the 𝐵 frame: [𝜙 𝜃 𝜓]𝑇 

𝜒  Course angle.  Only the same as yaw angle in zero wind and sideslip. 

𝑝  Roll rate 

𝑞  Pitch rate 

𝑟  Yaw rate 

𝝎𝐵/𝑁 Angular velocity of the aircraft body frame relative to Earth inertial frame. 

𝜶𝐵/𝑁  Angular acceleration of the aircraft body frame relative to the Earth inertial frame. 

𝑉𝑎  Airspeed.  Magnitude of the airspeed vector 𝑽𝑎 
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𝑽𝑎  Vector representing the speed of the air mass relative to the aircraft.  Points into the 

direction the air mass is coming from. 

𝛼  Angle of Attack 

𝛽  Angle of Sideslip 

𝑎𝑥  The component of the inertial acceleration of the aircraft in the direction of the body X axis 

𝑎𝑦  The component of the inertial acceleration of the aircraft in the direction of the body Y axis 

𝑎𝑧  The component of the inertial acceleration of the aircraft in the direction of the body Z axis 

𝒂𝐵/𝑁 Acceleration of body frame relative to Earth inertial frame.   

𝑤𝑥  Component of the wind velocity 𝑽𝑤 in the direction of the aircraft body positive X axis. 

𝑤𝑦  Component of the wind velocity 𝑽𝑤 in the direction of the aircraft body positive Y axis. 

𝑤𝑧  Component of the wind velocity 𝑽𝑤 in the direction of the aircraft body positive Z axis. 

𝑤𝑛  Component of the wind velocity 𝑽𝑤 in the direction from the north. 

𝑤𝑒  Component of the wind velocity 𝑽𝑤 in the direction from the east. 

𝑤𝑑  Component of the wind velocity 𝑽𝑤 in the downward direction. 

𝑽𝑤  Wind speed velocity vector.  Indicates which direction the wind is coming from. 

𝚽EKFY  State transition matrix.  Maps the values of one state to the next state inside the time update 

section of a Kalman filter. 

𝑷𝐸𝐾𝐹𝑌  Covariance matrix of the states in extended Kalman filter Y. 

𝑹𝐸𝐾𝐹𝑌  Matrix of expected sensor noise that is used in extended Kalman filter Y. 

𝒙𝐸𝐾𝐹𝑌  The vector of states that is being estimated by extended Kalman filter Y. 

𝒚𝐸𝐾𝐹𝑌  The vector of measurements that are used in extended Kalman filter Y. 

𝒖𝐸𝐾𝐹𝑌 The vector of known truth inputs used by extended Kalman filter Y. 

𝑭𝐸𝐾𝐹𝑌  The matrix that maps the measurements and inputs of an extended Kalman filter Y to the 

time derivatives of the states of the extended Kalman filter Y 

𝑯𝐸𝐾𝐹𝑌 The matrix that maps the states and inputs of an extended Kalman filter Y to the 

measurements of the extended Kalman filter Y. 

𝜖  State noise vector. 

𝜂  Measurement noise vector. 

𝛿𝑒  Elevator deflection, as commanded by the autopilot. 

𝛿𝑎  Aileron deflection, as commanded by the autopilot. 
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𝛿𝑟   Rudder deflection, as commanded by the autopilot. 

𝛿𝑡   Percentage of available thrust that is commanded by the autopilot, on a unit scale where 

𝛿𝑡 = 0  means use no thrust and 𝛿𝑡 = 1 means use all available thrust.  Thrust force is 

simulated as being directly proportional to 𝛿𝑡. 

𝜇  Value that represents the mean of a set of data.  Same as the first moment of a set of data.  

The expected value operator returns the mean. 

𝜎  Value that represents the standard deviation of a set of data.  The standard deviation of a 

dataset is the square root of the variance of the dataset. 

𝐸 Operator that calculates the expected value of a set of data.  The value returned is the mean 

of the set of data that was operated on. 

𝑚𝑖𝑛  Represents the minimum value of a set of data. 

𝑚𝑎𝑥  Represents the maximum value of a set of data. 

𝑑

𝑑𝑡

𝐵
  Time derivative performed in the 𝐵 Frame. 

𝑥 The hat symbol designates the output of the state estimator for the variable 𝑥 

𝑏𝑔𝑥  The gyro bias about the body frame axis designated by x 

𝑏𝑎𝑥 The accelerometer bias in the direction of the body frame axis designated by x 
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3 Background Information 

This section contains technical background information that is used throughout this document. 

3.1 Reference Frames 

When expressing the components of vectors, there are two frames of reference that are used in this 

document.  Those are the aircraft body fixed 𝐵 frame and the earth-fixed inertial 𝑁 frame.  An earth 

fixed frame isn’t truly inertial, as the frame rotates as the earth rotates, and the earth rotates about the 

Sun, and the Sun rotates around the galaxy, and so on.  However, in this document, the earth-fixed 𝑁 

frame is considered the base inertial reference frame, unless it is otherwise explicitly stated.  The one 

exception is in the covariance calculation in the sensor fusion of method 2. 

The body fixed 𝐵 frame is a Cartesian frame whose origin is at the center of gravity of the aircraft.  The X 

(1st) axis points outward from the nose of the aircraft, the Y (2nd) axis points out the right side of the 

aircraft, and the Z (3rd) axis points directly downward out of the aircraft.  Knowing the exact geometric 

orientation of this frame with respect to aircraft parts is not necessary for this study.  For the purposes 

of this study, all sensors will be assumed to be at the center of gravity of the aircraft. 

The inertial earth-fixed 𝑁 frame is also referred to as the North-East-Down or N-E-D frame.  The 𝑁 frame 

is also a Cartesian frame, and its origin is at the surface of the Earth, at the position of the start of the 

simulations in this document.  All distances measured in the 𝑁 frame are with respect to the starting 

point of the simulation, not actual latitude and longitude coordinates. 

A visualization of these two frames is shown in Figure 3.1. 
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Figure 3.1: Aircraft Reference Frames 

The relative orientation of these two frames is described in this paper using 3-2-1 Euler angles.  These 

Euler angles describe the orientation of the aircraft 𝐵 frame relative to the inertial 𝑁 frame through a 

series of three rotations.  The 𝐵 frame is obtained by rotating the first two axes of the 𝑁 frame about 

the 3rd axis by an amount known as the yaw angle 𝜓, then a rotation about the new transformed axes’ 

2nd axis by an amount known as the pitch angle 𝜃, and then a last rotation about this new transformed 

axes’ 3rd axis by an amount known as the roll angle 𝜙.  These three measures of rotation comprise the 3-

2-1 Euler angle collection in equation (3.1). 

 𝝍 = [
𝜙
𝜃
𝜓
] (3.1) 

This collection of Euler angles is referred to as the aircraft’s attitude.  Using this definition, the attitude 

information can be used to map a vector written in body frame components into inertial frame 

components with equation (3.2).   

 [𝑨]𝑁 = 𝑹𝑁𝐵 [𝑨]𝐵  (3.2) 



www.manaraa.com

9 

𝑹𝑁𝐵 in Equation (3.2) represents the direction cosine matrix (DCM) or rotation matrix that maps vectors 

from the 𝐵 frame into the 𝑁 frame.  The definition of this DCM for 3-2-1 Euler angles (3.1) is in equation 

(3.3), which is provided in [8]. 

 𝑹𝑁𝐵 = [

cos𝜓 cos 𝜃 cos𝜓 sin 𝜃 sin𝜙 − cos𝜙 sin𝜓 cos𝜙 cos𝜓 sin𝜃 + sin𝜓 sin𝜙
sin𝜓 cos𝜃 sin𝜓 sin𝜃 sin𝜙 + cos𝜙 cos𝜓 cos𝜙 sin𝜓 sin𝜃 − cos𝜓 sin𝜙
− sin 𝜃 cos𝜃 sin𝜙 cos𝜃 cos𝜙

] (3.3) 

A DCM is an orthogonal matrix such that its transpose performs an inverse mapping, such as in 

equations (3.4) and (3.5). 

 𝑹𝐵𝑁 = 𝑹𝑁𝐵
𝑇  (3.4) 

 [𝑨]𝐵 = 𝑹𝐵𝑁 [𝑨]𝑁  (3.5) 

Finally, it is important to realize that the time derivatives of Euler angles are not simply the rate of 

change of their values, but are instead the rate of change of their angles in their respective intermediate 

frames.  Reference [9] provides this relationship, given in equation (3.6). 

 [

�̇�

�̇�
�̇�

] = [

1 sin𝜙 tan𝜃 cos𝜙 tan𝜃
0 cos𝜙 −sin𝜙
0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

] [𝝎𝐵/𝑁]
𝐵

  (3.6) 

[𝝎𝐵/𝑁]
𝐵

 is the angular velocity of the aircraft with respect to the inertial frame, written as aircraft body 

frame components of roll rate, yaw rate, and pitch rate, as given in equation (3.7). 

 [𝝎𝐵/𝑁]
𝐵

= [
𝑝
𝑞
𝑟
]  (3.7) 

Thus, the relationship between the yaw, pitch, and roll rates and the Euler angle rates is equation (3.8). 
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 [

�̇�

�̇�
�̇�

] = [

1 sin𝜙 tan𝜃 cos𝜙 tan𝜃
0 cos𝜙 −sin𝜙
0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

] [
𝑝
𝑞
𝑟
] (3.8) 

3.2 The Wind Triangle 

The next piece of information that is used throughout this document is the concept of the wind triangle.  

The wind triangle relates the three measures of velocity that are used throughout this document. The 

wind triangle is shown in Figure 3.2. 

 

Figure 3.2: The Wind Triangle 

The vector 𝑽𝐵/𝑁 represents the velocity of the aircraft with respect to the inertial Earth-fixed frame.  In 

this paper, vector subscripts “𝑋/𝑌” designate the vector quantity of the 𝑋 frame relative to the 𝑌 frame. 

The way to read 𝑽𝐵/𝑁 is “the velocity of the body frame B with respect to the inertial frame N.”   The 

vector 𝑽𝑎 represents the velocity of the air over the aircraft, or the velocity of the air with respect to the 

body 𝐵 frame.  It points in the direction that the air mass is flowing towards.  The vector 𝑽𝑤 is the 

velocity of the wind, or the velocity of the air with respect to the inertial 𝑁 frame.  It points in the 
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direction the wind is coming from.  As illustrated by the wind triangle in Figure 3.2, these vectors are 

related through equation (3.9). 

 𝑽𝐵/𝑁 = 𝑽𝑎 + 𝑽𝑤 (3.9) 

Now, the notion of air data is also used throughout this document.  Air data is the coined term for the 

scalar values for airspeed 𝑉𝑎, angle of attack 𝛼, and angle of sideslip 𝛽.  When the airspeed vector is 

written in aircraft body coordinates, air data is related to the vector through the following relationship. 

 [𝑉𝑎]
𝑩 = 𝑉𝑎 [

cos 𝛼 cos𝛽
sin𝛽

sin𝛼 cos𝛽
] (3.10) 

 

3.3 The Extended Kalman Filter 

A Kalman filter is a software algorithm that determines a “best guess” estimate of a set of states given 

relationships of noisy sensor inputs to the states that are being estimated.  This “best guess” is the 

values for the states that give the minimum variance of the errors between those estimated state values 

and the state values that a sensor model gives.  This sensor model is a known or expected relationship 

from available sensor data to the states that are being estimated.  To explain that in mathematical 

terms, an extended Kalman filter (EKF) filters the states that are provided by a nonlinear state-space 

model that describes the relationship of the states to sensors and the relationship of the states to state 

time derivatives.  This set of relationships is described by the set of equations (3.11) and (3.12). 

 �̇�𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑭𝐸𝐾𝐹(𝒙𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , 𝒖𝐸𝐾𝐹) + 𝜖 (3.11) 

 𝒚𝐸𝐾𝐹 = 𝑯𝐸𝐾𝐹(𝒙𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , 𝒖𝐸𝐾𝐹) + 𝜂  (3.12) 
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In this non-linear state space relationship, 𝒙𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 is a vector of the states being estimated by the 

EKF,  𝒚𝐸𝐾𝐹 is a vector of the measurements, and 𝒖𝐸𝐾𝐹 is the vector of pre-determined inputs to the EKF 

that are to be taken as truth.  As discussed later, not all values needed by a Kalman filter can be treated 

as measurements.  Most often, some values need to be treated as true error-free measurements for the 

state-space system in (3.11) and (3.12) to be formed.  A normal (not extended) Kalman filter is an 

extended Kalman filter whose state space relationships in (3.11) and (3.12) are linear. 

Now, the variance of the error in the estimate of the states is represented by the covariance matrix 

𝑷𝐸𝐾𝐹 whose definition is in equation (3.13). 

 𝑷𝐸𝐾𝐹 = 𝐸 [(𝒙𝐸𝐾𝐹 − 𝒙𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)(𝒙𝐸𝐾𝐹 − 𝒙𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)
𝑇
] (3.13) 

𝒙𝐸𝐾𝐹 Represents the estimated state vector that is the output of the EKF.  𝒙𝐸𝐾𝐹,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 Represents the 

states that are computed via the expected relationship to the measurements that is given by equations 

(3.11) and (3.12).   The operator 𝐸 is the expected value, which returns the first moment of a dataset, 

the mean.  The expected value operator determines the mean of all of the occurrences of the expression 

it operates on. When Kalman filters are used in real-time control systems like for small UAVs, equation 

(3.13) calculates the mean of all the error covariances of all the updates to the states that have occurred 

thus far. 

Next, the minimum error variance estimate is obtained by minimizing the covariance matrix 𝑷𝐸𝐾𝐹.  In an 

EKF, this is done in a two-step procedure; once each time an update for the measurements 𝒚 is 

obtained, using relationship (3.12), and once each time a prediction can be made using relationship 

(3.11).  
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3.3.1 Measurement Update 

The procedure that is followed at each update of the measurement vector 𝒚𝐸𝐾𝐹 is called the 

measurement update.  The measurement update creates a minimum variance estimate of the states 

𝒙𝐸𝐹𝐾,𝑘 and updates the covariance matrix 𝑷𝐸𝐾𝐹,𝑘 for the current update 𝑘.  These actions are 

performed by first calculating the Kalman gain matrix 𝑲𝐸𝐾𝐹,𝑘 for the current update  𝑘 as is outlined in 

equation (3.14). 

 𝑯𝐸𝐾𝐹,𝑘 = 𝑯𝐸𝐾𝐹(𝒙𝐸𝐾𝐹,𝑘−1, 𝒖𝐸𝐾𝐹,𝑘   ) 

 𝑲𝐸𝐾𝐹,𝑘 = 𝑷𝐸𝐾𝐹,𝑘−1𝑯𝐸𝐾𝐹,𝑘
𝑇 (𝑯𝐸𝐾𝐹,𝑘𝑷𝐸𝐾𝐹,𝑘−1𝑯𝐸𝐾𝐹,𝑘

𝑇 + 𝑹𝐸𝐾𝐹)
−1

 (3.14) 

𝑹𝐸𝐾𝐹 is a constant (unchanging) matrix representing the expected covariance of the measurements and 

the 𝑯𝐸𝐾𝐹 function is the matrix in the relationship in equation (3.12).  The subscript 𝑘 − 1 on a tensor 

indicates using the values from the previous Kalman filter update of that tensor.  The subscript 𝑘 

indicates the values for the current update of that tensor.   Once it’s computed in (3.14), the Kalman 

gain matrix 𝑲𝐸𝐾𝐹,𝑘 for this measurement update is used to compute the updated state estimate 

𝒙𝐸𝐾𝐹,𝑘  and the updated covariance matrix 𝑷𝐸𝐾𝐹,𝑘, as in equations (3.15) and (3.16), respectively. 

 𝒙𝐸𝐾𝐹,𝑘 = 𝒙𝐸𝐾𝐹,𝑘−1 +𝑲𝐸𝐾𝐹,𝑘 [𝒚𝐸𝐾𝐹 −
𝜕𝑯𝐸𝐾𝐹

𝜕𝒙𝐸𝐾𝐹
𝒙𝐸𝐾𝐹,𝑘−1] (3.15) 

 𝑷𝐸𝐾𝐹,𝑘 = (𝐼 − 𝑲𝐸𝐾𝐹
𝜕𝑯𝐸𝐾𝐹,𝑘

𝜕𝒙𝐸𝐾𝐹,𝑘
)𝑷𝐸𝐾𝐹,𝑘−1 (3.16) 

The matrix 
𝜕𝑯𝐸𝐾𝐹

𝜕𝒙𝐸𝐾𝐹
 is the Jacobian of the non-linear measurement relationship 𝑯𝐸𝐾𝐹in equation (3.12).  At 

this point, both the updated minimum error variance estimate for the states 𝒙𝐸𝐾𝐹,𝑘 and the updated 

error covariance matrix 𝑷𝐸𝐾𝐹,𝑘are saved off for the next (measurement or time) update. 
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3.3.2 Time Update 

The procedure that is followed each time a state prediction update can be made using relationship 

(3.11) is called the time update.  While the measurements 𝒚𝐸𝐾𝐹 do not have to be available, the inputs 

𝒖𝐸𝐾𝐹 do need to be available.  Typically, inputs 𝒖𝐸𝐾𝐹 are not available continuously, but if equation 

(3.11) can be evaluated continuously, a time interval is chosen so that a balance between processor 

usage and estimator performance is achieved.  In either case of discrete or continuous inputs, the time 

update is performed many times in between each measurement update.   At each of these time 

updates, the state estimate is predicted from the measurement relationship in equation (3.11), using a 

simple first-order integration scheme as depicted by equation (3.17). 

 𝒙𝐸𝐾𝐹,𝑘 = 𝒙𝐸𝐾𝐹,𝑘−1 +
𝑇𝑠

𝑁
 𝑭𝐸𝐾𝐹(𝒙𝑘−1, 𝒖𝑘) (3.17) 

The index 𝑘 − 1 indicates to use the information from the most recent previous time or measurement 

update.  If time and measurement updates occur at the same time, a time update is always performed 

first, and then the 𝑘 indexed output of the time update becomes the 𝑘 − 1 information used in the 

measurement update.  Note that with a nonlinear EKF, the above integration to estimate the state 

vector 𝒙𝐸𝐾𝐹,𝑘 can be run multiple times to reduce errors due integration errors from nonlinearities in 

the state propagation.  The variable 𝑁 in equation (3.17) is the total number of iterations and 𝑇𝑆 is the 

time that has elapsed since the last measurement update.  Inherently, there is trade space between 

processor consumption and performance of the time update. 

Now, to update the covariance matrix at each time update, a matrix is created that relates the states of 

the previous time step 𝒙𝐸𝐾𝐹,𝑘−1to the states of the current time step 𝒙𝐸𝐾𝐹.𝑘.  This matrix is called the 

state transition matrix Φ, and is derived using the relationship 𝑭𝐸𝐾𝐹 from equation (3.11) as depicted in 

equation (3.18). 
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 𝒙𝐸𝐾𝐹,𝑘 = ΦEKF,(k,k−1)𝒙𝐸𝐾𝐹,𝑘−1 (3.18) 

 �̇�EKF,(k,k−1) =
𝜕𝑭𝐸𝐾𝐹(𝒙𝐸𝐾𝐹,𝑘,𝒖𝐸𝐾𝐹,𝑘)

𝜕𝒙𝑬𝑲𝑭
𝚽EKF,(k,k−1)  (3.19) 

 𝑤ℎ𝑒𝑟𝑒   𝚽𝐸𝐾𝐹,(𝑘−1,𝑘−1) = 𝑰 (3.20) 

The subscripts (𝑎, 𝑏) on the state transition matrix 𝚽𝐸𝐾𝐹 designates that the matrix transitions the state 

vector 𝒙𝐸𝐾𝐹 from update 𝑏 to update 𝑎, like the transition matrix in (3.18) maps the previous 𝑘 − 1 

update to the current update 𝑘.  Equation (3.19) could be solved analytically or numerically.  A 

numerical solution would require linearizing the state dynamics of 𝑭𝐸𝐾𝐹 in equation (3.11) about the 

updated state vector 𝒙𝐸𝐾𝐹,𝑘 that was determined in equation (3.17).  With a solution for the state 

transition matrix, like is obtained in state estimation method 2, the state error covariance matrix can be 

updated via equation (3.21). 

 𝑷𝐸𝐾𝐹,𝑘 = 𝚽EKF,(k,k−1)𝑷𝐸𝐾𝐹,𝑘−1𝚽EKF,(k,k−1)
𝑇 +𝑸𝐸𝐾𝐹 (3.21) 

The matrix 𝑸𝐸𝐾𝐹 is a tunable parameter that represents the expected covariance of the state derivatives 

as determined by relationship (3.11).   

However, solutions for the state transition matrix are often not easily obtainable.  If the state transition 

matrix is not obtained, a linearized solution of (3.19) could be used to update the covariance matrix.  .  

The first term of the Taylor series expansion of the solution to the differential equation (3.19) is derived 

in [4], and it results in the ability to update the covariance matrix as is described in equation (3.22). 

 𝑷𝐸𝐾𝐹,𝑘 = 𝑷𝐸𝐾𝐹,𝑘−1 +
𝑇𝑠

𝑁
([
𝜕𝑭𝐸𝐾𝐹(𝒙𝐸𝐾𝐹,𝑘,𝒖𝐸𝐾𝐹,𝑘)

𝜕𝒙𝑬𝑲𝑭
]𝑷𝐸𝐾𝐹,𝑘−1 [

𝜕𝑭𝐸𝐾𝐹(𝒙𝐸𝐾𝐹,𝑘,𝒖𝐸𝐾𝐹,𝑘)

𝜕𝒙𝑬𝑲𝑭
]
𝑇

) + 𝑸𝐸𝐾𝐹 (3.22) 



www.manaraa.com

16 

It is important to note that this is a linearized solution of the nonlinear relationship between two states, 

as depicted by (3.18), and so like the time update for the state vector, updating the covariance matrix 

can also be iterated a number of times to improve the estimate.  The variable 𝑁 in equation (3.22) is the 

iteration number, and the matrix 𝑸𝑬𝑲𝑭 is again the expected covariance of the error in relationship 

(3.11).  Performing this calculation is essentially the same a performing a numerical integration to 

determine the state transition matrix that is needed for (3.21), but both forms of updating the 

covariance matrix (3.21) and (3.22) are used in this document.   
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4 Aircraft States Needed for Autopilots 

Before attacking any state estimation problem, it is critical to first know what states needs to be 

gathered.  Ideally, a state estimator would be able to accurately reproduce every state of an aircraft.  .   

However, full state estimation is often impossible given a finite set of sensors like the ones that are 

typically available on a small UAV.  Further, estimating more states than are needed can be excessively 

costly and computationally intensive.  This paper will focus on capturing only the aircraft states that are 

necessary for autopilot control of small UAVs.   

4.1 Scoping the Estimation Problem 

True total information on the kinematic state of an object would involve a description of the continuous 

motion of an object, such that all orders of derivatives of the motion can be definitively described.  

However, a description of the continuous motion of an aircraft is not possible in a real world system, as 

the true motion of the aircraft can never be known ahead of time, and digital sensors that provide 

information are discrete.  Thus, state estimation for aircraft is performed as determining the current 

states of an aircraft a given point in time.  While it could be desired to obtain all of the time derivatives 

of the motion of an aircraft, second order information is all that is required for most UAV applications.  

In this research, the collection of states in (4.1) will be considered the complete set of states that could 

be desired to be gathered. 

 𝒙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {𝒑𝐵/𝑁, 𝑽𝐵/𝑁 ,  𝒂𝐵/𝑁 , 𝝍, 𝝎𝐵/𝑁 ,  𝜶𝑩/𝑵, 𝑽𝑤} (4.1) 

The vectors in 𝒙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 describe the inertial position, velocity, and acceleration of the aircraft, the 

angular position, angular velocity, and angular acceleration of the aircraft relative to the inertial frame, 

and the velocity of the airflow around the aircraft.   It can be noted that any combination of two of the 



www.manaraa.com

18 

velocity vectors 𝑽𝐵/𝑁, 𝑽𝑎 , and 𝑽𝑤  can be used in (4.1) to fully describe the velocities of the aircraft and 

the air, as the three are related through equation (3.10).  Deeper information could be included in this 

list, such as the angular acceleration of the aircraft, the rate of change of wind velocity, or even the 

rotational motion of the air.  However, deeper information is not necessary for autopilot control, as will 

be shown throughout this paper.  Deeper information is also often very difficult, expensive, and 

impractical for small UAVS.   While there are a number of different existing autopilot algorithms that 

each require a different states of states, (4.1) is considered a superset of the states that all common 

small UAV autopilots would use to control a small UAV.  

This is a superset because some of the states listed in (4.1) are not necessary for autopilots to perform 

acceptably well.  Much work has been done in estimating the states that makeup the wind vector 𝑽𝑤, 

such as in [10], [11], and [12].  However, full 3-dimensinoal measurements of the wind vector, even in 

windy conditions, are not necessary for an autopilot to function.  They would be needed for an autopilot 

that employs an energy harvesting algorithm, or for a mission to gather wind information, but is not 

strictly necessary for autopilots to maintain basic stable flight, as will be shown shortly.  While it is not 

important to recover full information about the wind vector, it is important to obtain a rough measure 

of the airspeed of the aircraft for the purpose of ensuring the aircraft doesn’t travel too slow in large 

tailwinds and stall.  With just inertial velocity information, airspeed has to be assumed close to the 

inertial velocity.  Such an assumption can easily lead to stall because it is not uncommon for small 

aircraft to experience wind speeds close to the speed of their inertial velocity.  Airspeed sensors that can 

remedy this problem are readily available today for under $50 USD. 

Nonetheless, the lack of a need for full wind vector 𝑽𝑤 stems from the aerodynamic behavior of small 

UAVs.  Small UAVs are lightweight and thus naturally quickly align themselves into the airflow.   This 

results in relatively small disturbances in angles of attack and angles of sideslip when compared to the 
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disturbances seen by large scale aircraft.  Small UAVs are also typically designed to be aerodynamically 

stable, so rapid control authority is not necessary to maintain attitude. In contrast, some large modern 

maneuver aircraft, such as the Lockheed Martin F-22, are aerodynamically unstable and require 

significant and rapid control authority to maintain attitude. 

This behavior common to most small UAVs is often used to actually represent the wind vector in terms 

of other estimated states.  By assuming that sideslip is zero and that the angle of attack is equivalent to 

the pitch angle, equation (3.10) for the airspeed vector 𝑽𝑎 can be simplified to equation (4.2). 

 [𝑽𝑎]
𝑩 = 𝑉𝑎 [

cos 𝛼 cos𝛽
sin𝛽

sin𝛼 cos𝛽
]
𝛽=0,𝛼=𝜃
⇒      [𝑽𝑎]

𝑩 = 𝑉𝑎 [
cos𝜃
0
sin𝜃

] (4.2) 

This assumes that the airspeed magnitude 𝑉𝑎 is either directly measured or estimated.  As discussed 

above, obtaining the airspeed magnitude is necessary to avoid stall and thus 𝑉𝑎 should always be 

available in some fashion.  If the inertial velocities are also estimated, the airspeed vector in equation 

(3.9) can be substituted with equation (4.2) and rearranged to obtain equation (4.3), which is a rough 

estimate of the wind vector 𝑽𝑎. 

 [𝑽𝑤]
𝑩 = [𝑽𝐵/𝑁]

𝑩
− 𝑉𝑎 [

cos 𝜃
0
sin𝜃

] (4.3) 

This simplification is the basis for showing that estimating the angle of attack and angle of sideslip are 

not necessary. 

Both the autopilot and the two state estimation methods described and simulated in this document do 

not estimate the full wind vector 𝑽𝑤.  Instead, they use an airspeed sensor and the assumption in (4.2) 

where air data is required.  The validity of this assumption that is discussed in the prior section is 
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demonstrated here using a simulation of the RECUV Tempest small UAV, employing a total energy 

controller that processes altitude, course angle rate, and airspeed commands. 

4.2 Overview of the Autopilot   

While the focus of this document is on state estimation, an autopilot is needed to control the flight of 

the aircraft in the simulations so that analysis of the state estimation methods can be done under 

different benchmark maneuvers.  The autopilot that is used to perform this task is a total energy based 

controller, which is a common controller to use for small UAVs.  The specific controller used here takes 

commanded airspeed 𝑉𝑎𝑐, altitude ℎ𝑐, and course angle rate �̇�𝑐 and commands thrust, aileron, rudder, 

and elevators.  It does this by following the algorithm in [4] and [13]. 

Table 4.1: Total Energy Autopilot Algorithm Description 

Step Description 

1 Calculate a commanded bank angle 𝜙𝑐using a Proportional, Integral, and Derivative (PID) 

controller that process the error between the commanded course angle rate and the course 

angle rate that is necessary for the desired turn, which is in equation (4.4). 

 𝜙𝑐 = 𝑃𝐼𝐷(�̇�𝑐 − �̇�) = 𝑃𝐼𝐷 (�̇�𝑐 −
𝑔

𝑉𝑔
tan𝜙) (4.4) 

This equation assumes that the course angle rate is equivalent to 
𝑔

𝑉𝑔
tan𝜙.  This is only the case 

in zero wind. The effects of this will be seen in the simulation results that follow. 
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2 Calculate aileron deflection 𝛿𝑎 to control the bank angle 𝜙 using a PID control that process the 

bank error, as in equation (4.5). 

 𝛿𝑎 = 𝑃𝐼𝐷(𝜙𝑐 − 𝜙) (4.5) 

3 Determine commanded pitch angle 𝜃𝑐 from a PID controller on the airspeed error, as in 

equation (4.6). 

 𝜃𝑐 = 𝑃𝐼𝐷(𝑉𝑎𝑐 − 𝑉𝑎) (4.6) 

This essentially just increases pitch to decrease airspeed and decrease pitch to increase 

airspeed.  This means that in order for the aircraft to climb, there must be excess airspeed.   

This observable is seen in all of the simulations in this document. 

4 Calculate elevator deflection from commanded pitch using a PID controller, as in equation (4.7) 

 𝛿𝑒 = 𝑃𝐼𝐷(𝜃𝑐 − 𝜃) (4.7) 

5a If the aircraft is within 10 meters of the ground, assume plane is in takeoff, and set the 

commanded thrust to a constant as in equation (4.8). 

 𝛿𝑡 = 0.8 (4.8) 

Note that there is no landing mode for this autopilot. 

5b If the aircraft is more than 10 meters off the ground, use a total energy approach to command 

thrust.  This total energy calculation is uses a PID controller on the error between the 
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commanded and current sum of the kinetic and gravitational potential energies, as depicted in 

equation (4.9). 

 𝛿𝑡 = 𝑃𝐼𝐷 (𝑔(ℎ𝑐 − ℎ) +
1

2
(𝑉𝑎𝑐
2 − 𝑉𝑎

2)) (4.9) 

6 Calculate the rudder deflection that enforces zero sideslip.  This could be done with a PID 

controller against estimated sideslip angle 𝛽, but this autopilot recognizes that 𝛽 is often not 

available and assumed to be zero as in equation (4.2).  So, the goal in this case is to instead zero 

the specific side force, which is the acceleration along the body Y axis 𝑎𝑦.  The sum of this 

acceleration component and the component of the gravity vector along the body Y axis is 

provided by the state estimator as the accelerometer measurement 𝑦𝑎𝑦.  This yields equation 

(4.10). 

 𝛿𝑟 = 𝑘𝑝,𝑠𝑖𝑑𝑒 𝑓𝑜𝑟𝑐𝑒𝑎𝑦 = 𝑘𝑝,𝑠𝑖𝑑𝑒 𝑓𝑜𝑟𝑐𝑒 (𝑦𝑎𝑦 − 𝑔 cos 𝜃 sin𝜙) (4.10) 

Equation (4.10) depicts how a proportional controller is used to zero the specific side force, or 

in other words zero the acceleration along the body Y axis. On a longitudinally symmetric 

aircraft, this also zeroes the sideslip angle 𝛽, even in wind. 

It can be noted that as discussed earlier, small UAVs typically quickly align themselves into the 

airflow.  This autopilot employs this controller as an additional measure to ensure sideslip is 

zero and thus coordinated turns are forcibly maintained.  Judging the necessity of a small UAV’s 

autopilot to actively control sideslip is outside of the scope of this research. 

The gains for the PID controller in the algorithm were designed such that they achieve acceptable closed 

loop tracking of their states. 



www.manaraa.com

23 

So in summary, this specific autopilot that is used throughout this document requires the inputs listed in 

equation (4.11). 

 𝒖𝑎𝑢𝑡𝑜𝑝𝑖𝑙𝑜𝑡 = [ℎ 𝑝 𝑞 𝜙 𝜃  𝑉𝑎  𝑉𝑔 𝑦𝑎𝑦] (4.11) 

The states in Equation (4.11) are the states that this paper will focus on estimating, as they are what is 

needed for autopilot control.  Note that this is still a subset of (4.1), as the airspeed is a function of the 

state vectors in (4.1), as depicted by (4.12), and the ground speed 𝑉𝑔 is also a function of the state 

vectors in (4.1), as depicted by (4.13). 

 𝑉𝑎 = ‖𝑽𝑎‖ = ‖𝑽𝐵/𝑁 − 𝑽𝑤‖ (4.12) 

 𝑉𝑔 = 𝑓(𝑽𝐵/𝑁 , 𝝍) = ‖ 𝑽𝑵 𝐵/𝑁  [1 1 0]‖ = ‖𝑹𝑁𝐵 𝑽𝑩 𝐵/𝑁 [1 1 0]‖ (4.13) 

Now, a distinction should be made here that these are the states needed for autopilot control and not 

overall navigation.  A navigation algorithm is what takes user commands, such as destination, course 

angle, and/or altitude, and turns them into autopilot commands, which in this case are altitude, course 

angle 𝑟𝑎𝑡𝑒, and airspeed.  Analyzing accurate navigational layer control in windy conditions is outside of 

the scope of this research because state estimation algorithms inherently provide the information 

necessary for navigation.  All that is really needed for navigation is inertial position and velocity 

estimates, and those can be obtained at a low rate directly from a GPS receiver.  The only complexity of 

navigation that should be mentioned here is that the navigation layer needs a calibrated closed loop 

controller on course angle 𝜒, as the autopilot takes course rate �̇� commands.  As will be explained, 

method 1 estimates the course angle for this purpose, and if the first two inertial frame components of 

the inertial velocity vector are available, like in method 2, the course angle can be determined via 

equation (4.14). 
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 𝜒 = tan−1 (
[𝑽𝐵/𝑁][1 0 0]

𝑁

[𝑽𝑩/𝑵][0 1 0]
𝑁 ) (4.14) 

Note that the equation (4.14) must be calculated using a quadrant-safe inverse tangent function.  

Course angle could be determined directly from GPS, but using a state estimator’s output provides a 

higher sample rate that the navigation layer can take advantage of. 

4.3 Simulation Setup 

Before focus can be turned to the state estimation methods, it must first be shown through simulation 

that this autopilot is able to effectively control a small UAV with the limited suite of state information 

listed in (4.11).  

 To properly assess the autopilot’s tracking of its commanded altitude, course angle rate, and airspeed, 

assessments must be made in flight regimes that small UAV autopilots and their state estimators are 

expected to be used in. To ensure each of these flight regimes is tested, the simulations throughout this 

document employ a number of benchmark maneuvers, which are described here. 

4.3.1 Benchmark 1: Straight and Level Flight 

The first benchmark maneuver that is used in the simulations is straight and level flight, with initial 

conditions equal to the commanded course angle rate, altitude, and airspeed, as depicted in (4.15). 

 ℎ0 = ℎ𝑐 = 100 𝑚, �̇�𝑐 = �̇� = 0, 𝑉𝑎0 = 𝑉𝑎𝑐 = 15 𝑚/𝑠 (4.15) 

In all of the benchmark maneuvers in this document, the initial conditions in (4.16) are used. 

 𝑝0 = 𝑞0 = 𝑟0 = 𝜙0 = 𝜃0 = 𝜓0 = 𝑝𝑒 = 𝑝𝑑 = 0 (4.16) 

An illustration of the movement of the simulated aircraft is in Figure 4.1. 
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Figure 4.1: Straight and Level Flight Illustration 

 

4.3.2 Benchmark 2: Coordinated Turn 

The second benchmark maneuver that is used in the simulations is a coordinated turn.  A coordinated 

turn is a turning maneuver that involves elevator, aileron, and rudder deflections such that no 

acceleration is experienced in the lateral Y axis direction of the aircraft.  Such a maneuver is illustrated in 

Figure 4.2. 
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Figure 4.2: Coordinated Turn Illustration 

The simulations that are performed in this document for benchmark 2 are 90 seconds in duration, which 

is the time required for 2.5 complete circles at a constant course angle rate of 10 degrees per second.  

The autopilot enforces a coordinated turn through controlling the lateral specific force to zero, as in 

equation (4.10), commanding roll angle required for a coordinated turn, as in equation (4.4), and by 

commanding pitch through commanded airspeed, as in equation (4.6).  It can be noted that the actual 

equation for required roll angle for a coordinated turn is equation (4.17). 

 �̇� =
𝑔

𝑉𝑔
tan𝜙 cos(𝜒 − 𝜓) (4.17) 

In the absence of wind, the course angle 𝜒 is equal to the yaw angle 𝜓, which transforms equation (4.17) 

into equation (4.18). 

 �̇� =
𝑔

𝑉𝑔
tan𝜙 (4.18) 

Since the autopilot still uses error in commanded airspeed instead of error in commanded course rate 

via (4.17) or even (4.18) in a coordinated turn, there is an observable lag in achieving a coordinated turn 
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in the simulations when a change in commanded course angle is applied.  This lag is characterized by an 

oscillation in pitch that is short in duration, which will be shown in simulation shortly. To illustrate this 

behavior, simulations are performed for coordinated turns by initially having the aircraft at the same 

straight and level initial conditions as benchmark 1 in (4.15) and (4.16), but with a commanded course 

angle rate �̇�𝑐 of 10 degrees per second. 

4.3.3 Benchmark 3: Wings Level Ascent 

The third benchmark that is used in this document is a wings level ascent.  For this benchmark, the same 

commanded altitude, airspeed, and course angle rate are the same as in the benchmark 1 (4.15).  The 

initial airspeed and course angle rate are also the same as (4.15), but the initial altitude is taken to be 

zero.  This setup is summarized in (4.19). 

 ℎ0 = 0, ℎ𝑐 = 100 𝑚, �̇�0 = 0, �̇�𝑐 = 0, 𝑉𝑎0 = 𝑉𝑎𝑐 = 15 𝑚/𝑠 (4.15) 

This essentially simulates takeoff, but beginning at the full commanded airspeed so that the aircraft 

doesn’t stall, as rolling on the ground is not part of this simulation.  Simulations of this benchmark 

maneuver are stopped when the aircraft becomes within 1 meter of its commanded altitude.  Figure 4.3 

illustrates this maneuver.   
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Figure 4.3: Wings Level Ascent Illustration 

Simulation of all three pieces of the ascent – takeoff, climb, and cruising altitude approach – enables 

observations and insights that are discussed later. 

4.3.4 The Dryden Wind Model 

This document simulates the wind necessary for analysis using the Dryden wind model.  The Dryden 

wind model is used throughout department of defense projects as a standard by which aircraft systems 

should be designed to when considering wind.  The Dryden wind model that is used in this document 

generates wind noise by summing sinusoidal signals with frequencies of relative power spectral 

densities that are given by military specification MIL-F-8785C.   The equations for the spectral density 

take two parameters – scale length and the wingspan of the aircraft that’s being simulated.  These two 

parameters provide how winds at high altitude should be scaled to those at low altitude, and the power 

of disturbances on the aircraft’s angular rates, respectively.  Note that for these simulations, high 
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altitudes, which are on the order of 2000 feet above ground level, are never reached, so the scale length 

has negligible impact on the wind speeds in our simulations. 

The simulations in this document use both outputs of the Dryden wind model – wind speed disturbances 

and angular rate disturbances.  The Dryden wind model uses a frozen turbulence field, so the wind 

speed output of the Dryden model must be added to the mean wind speed to obtain the actual wind 

speed value.  This is depicted by (4.16a) below. 

[

𝑤𝑛
𝑤𝑒
𝑤𝑑
] = [

𝑤𝑛
𝑤𝑒
𝑤𝑑
]

𝑚𝑒𝑎𝑛

+ [

𝛿𝑤𝑛
𝛿𝑤𝑒
𝛿𝑤𝑑

]

𝐷𝑟𝑦𝑑𝑒𝑛

 

This wind velocity output is subtracted from the inertial velocity to obtain the airspeed that is used in 

the linearized aerodynamic model of the Tempest UAV that the simulation uses.  This subtraction is in 

accordance with the wind vector convention in equation (3.9).  Second, the rate disturbance output of 

the Dryden wind model is added to the angular rates of the aircraft after the aerodynamic forces and 

moments are used to calculate the rigid body dynamics of the aircraft.  This is depicted in equation 

(4.16b). 

 [
𝑝
𝑞
𝑟
] = [

𝑝
𝑞
𝑟
]

𝑚𝑜𝑑𝑒𝑙

+ [
𝛿𝑝
𝛿𝑞
𝛿𝑟

]

𝐷𝑟𝑦𝑑𝑒𝑛

 (4.16b) 

These wind-augmented angular rates are then used as the input to the rigid body dynamics equations in 

the simulations.  

The simulations throughout this document use a mean wind speed of 7 meters per second  and a 

turbulence probability of exceedance of high-altitude intensity measurement set to 10^-5.  That level of 
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turbulence is classified by the Dryden model as severe.  Figure 4.4 below shows wind and rate 

disturbances that result from this wind. 

 

Figure 4.4: Example Dryden Wind Model Simulation  

Statistics on the absolute value of the wind and angular rate disturbance values presented in Figure 4.4 

are shown in Table 4.2.   

Table 4.2: Statistics of the Absolute Value of the Dryden Wind Components 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

𝑤𝑛 4.575743 0.473044 4.575743 0.473044 3.469525 5.790123 

𝑤𝑒 5.544791 0.709703 5.544791 0.709703 3.477738 7.082888 

𝑤𝑑 -0.12786 0.544442 0.457334 0.321883 0.000002 1.692289 

𝛿𝑝 -0.13099 2.025574 1.618597 1.224839 0.000012 6.35785 

𝛿𝑞 0.79809 1.929265 1.694187 1.220133 0.000042 8.172666 

𝛿𝑟 0.030636 2.295561 1.822656 1.395865 0.000026 7.868352 
 

The benchmark maneuvers that were previously discussed all use a commanded airspeed 𝑉𝑎𝑐of 15 m/s.  

The wind speeds shown in Figure 4.4 become as large as about half of this value.  Thus, as also 

previously discussed, it is imperative that the state estimators used here employ an airspeed sensor to 

ensure that the aircraft does not stall.  Also, the Beaufort wind scale [14] classifies a wind speed of 7 m/s 
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as a “Moderate Breeze” at which tree branches begin to move.  This is a wind speed that small UAVs will 

often encounter.  It will be seen shortly that even this moderate amount of wind is sufficient to highlight 

the strengths and weaknesses of the two state estimation methods analyzed here. 

Moreover, extreme winds not a part of this simulation.  The scope of this research is limited to the wind 

that UAVs might typically see outside of severe weather anomalies, as successfully controlling aircraft in 

such conditions involves more complex autopilots and navigational algorithms that are not used here. 

4.4 Sensors 

All of the simulations in this document employ an identical suite of sensors.  All simulations involve the 

use of a MEMS gyro and a MEMs accelerometer, which comprise the IMU sensor system.  The gyros 

provide the angular rates of the body fame relative to the inertial frame, and the accelerometers 

provide measured 𝑁 frame accelerations along the body frame components, plus gravity.  Also included 

is a GPS sensor, which provides measures for the position in the inertial 𝑁 frame and the velocity in the 

inertial 𝑁 frame.  The accuracy of the sensors modeled used in the simulations are determined from the 

spec sheets of actual off the shelf sensors that may be used in UAVs.  The IMU sensor models used in 

the simulation are set to closely match the following sensors: 

o Gyroscope: Analog Devices ADXRS450 

o Accelerometer: Analog Devices ADXL325 

The GPS sensor model that is used in the simulations in this document have Gaussian noise of 0.21 

meters in the north and east directions and .4 meters in the vertical direction, modelled as Gauss-

Markov process with a time constant of 1100.  The GPS sensor produces a non-time varying Gaussian 

error of 0.2 meters per second in the north, east, and down directions. 
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4.5  Demonstration of Autopilot Performance with Limited State Information 

Now that the setup of the simulation has been discussed, a simulation can be performed to validate the 

notion that the autopilot input states in (4.11) are at least a superset of the states that need to be 

estimated for an autopilot to successfully pilot an aircraft in both windy and non-windy conditions.  That 

is, it needs to be shown that this autopilot can successfully control the aircraft with the sates in (4.11).  

This by no means rules out the possibility that an autopilot could control an aircraft successfully in wind 

with fewer states.  But by illustrating that the states in (4.11) are sufficient for autopilot control of an 

aircraft in windy conditions, state estimation methods that obtain those state can be said to be 

sufficient to enable autopilot control of an aircraft in windy conditions. 

So, the performance of the autopilot discussed here will be measured by its error against its 

commanded inputs (airspeed, altitude, and course angle rate), under the three different benchmarks 

that were discussed.  To demonstrate the effectiveness of the autopilot in these simulations, the 

autopilot uses the true values of the states in (4.11) rather than through a state estimation method.   An 

analysis of the sensitivity of the autopilot’s performance to errors in the different states is beyond the 

scope of this research, as the purpose of this research is solely to measure the performance of the state 

estimation methods’ sensitivity to wind, and not an autopilot’s sensitivity to state errors. Further, an 

analysis of the sensitivity the autopilot to the states using the autopilot here would not necessarily be 

representative of autopilots as a whole.  Nonetheless, a limited sensitivity analysis using constant state 

errors under benchmark 2 is performed in section 4.6. 

4.5.1 Autopilot Performance under Benchmark 1 

Benchmark 1 is straight and level flight.   Figure 4.5 below shows the error of commanded course angle 

rate, �̇� − �̇�𝑐, the error in the commanded airspeed 𝑉𝑎 − 𝑉𝑎𝑐, and error in the commanded altitude ℎ −
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ℎ𝑐.  This is the sign convention for error that is used throughout this paper – the desired value 

subtracted from the actual value.  This means that a positive error represents the actual value being 

higher than the desired value.  For example, here, a positive airspeed error represents the actual 

airspeed being higher than the commanded airspeed. 

 

Figure 4.5: Command Tracking Error for Benchmark 1 in Zero Wind 

Statistics of the error shown in Figure 4.5 are provided in Table 4.3. The subscript 𝑎𝑏𝑠 in Table 4.3 

indicates that the statistic is calculated on the absolute value of the corresponding state error.  The 

absence of the subscript 𝑎𝑏𝑠 denotes that statistic is calculated on the raw state error, without first 

performing an absolute value operation.  This convention will be used throughout this document. 

Table 4.3: Command Tracking Error Statistics for Benchmark 1 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 
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Course Angle Rate (deg/sec) -0.00038 0.095553 0.076424 0.057351 0 0.376379 

Airspeed (meters/sec) -0.00872 0.076007 0.018394 0.074261 0 0.803293 

Altitude (meters/sec) -0.01102 0.140657 0.032702 0.137245 0 1.179383 

 Figure 4.5 and Table 4.3 show that the autopilot closely tracks all three command inputs. Relating to the 

standard deviation of the raw error commands, the autopilot typically keeps the course angle rate 

within 0.1 deg/s, the airspeed with 0.08 m/s, and the altitude within 0.q5 m.   It can be noticed that 

although the initial airspeed and altitude of the vehicle are set to the commanded airspeed and altitude, 

the autopilot induces a small deviation from the commanded airspeed and altitude for a short time.    

These deviations are small, roughly 0.5 m/s in airspeed and roughly 1 m in altitude, and are due to the 

fact that the initial pitch angle is set to zero rather than a slightly positive number, which is needed to 

maintain the commanded altitude.  Also, the continual oscillations in course angle rate are small, and 

are due to the non-zero noisy input of the accelerometer that measures side force, 𝑦𝑎𝑦.  The 

accelerometer that measures acceleration along the body Y axis is passed through a low pass filter, as 

described later, but its output is still noisy due to the high cutoff frequency that is used in the low pass 

filter.  This measurement is used by the autopilot to command rudder deflection, artificially creating 

sideslip and thus a non-zero course angle rate.  If 𝑦𝑎𝑦  is taken to be zero, simulations not illustrated here 

have produced exactly zero course angle rate error. 

Overall, the autopilot performs remarkably well for straight and level flight with zero wind. Next, Figure 

4.6 below is a plot of the autopilot’s performance for straight and level flight under the light wind 

Dryden model illustrated in section 4.3.4. 
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Figure 4.6: Command Tracking Error for Benchmark 1 in Light Wind 

When Figure 4.6 is compared to Figure 4.5, it can be seen that the wind induces a definite measurable 

error in the state tracking.  Statistics for the error in the autopilot’s tracking of the commanded states is 

quantified by Table 4.4 below. 

Table 4.4: Command Tracking Statistics for Benchmark 1 in Light Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

Course Angle Rate (deg/sec) 0.012568 0.991571 0.593818 0.794174 0.000035 24.80099 

Airspeed (meters/sec) -0.00944 0.225685 0.179037 0.137713 0.000001 1.169365 

Altitude (meters/sec) -0.0122 0.35684 0.280212 0.221261 0 1.36271 

When the statistics for light wind in Table 4.4 are compared to the statistics for zero wind in Table 4.3, it 

can be seen that the command tracking error in zero wind is relatively negligible.  The average values of 

the absolute values of the error in light wind for course angle rate, airspeed, and altitude, are much 
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greater than the errors in light wind.  This, along with the oscillations seen in Figure 4.6, are caused by 

both the effects of the wind velocity on the aerodynamic forces and moments on the aircraft, and the 

angular rate disturbances that the Dryden wind model provides.  This combination of perturbations 

causes changes in the course angle rate, airspeed, and altitude that the autopilot must correct for this.  

These statistics illustrate that the autopilot does a very good job of maintaining the commanded course 

rate, airspeed, and altitude, as all three values stay very close to their commanded values. 

Now, before moving on, it is important to note that the wind observed in the simulations is not exactly 

identical to those in Figure 4.4.  The Dryden wind model used here uses seed values for its random noise 

generator, but the Dryden model varies its frequency spectrum based on the ground speed and 

orientation of the aircraft to simulate a consistent wind field that the aircraft can fly through in different 

manners.  Thus, the wind speeds and angular rate disturbances as seen by the aircraft are not always 

exactly the same.    They will only be the same if the aircraft maintains straight and level flight at a 

constant airspeed through the wind field.  With an aircraft flying in wind, that is never the case, so the 

wind seen by the aircraft is slightly different in each simulation.  To keep the discussion concise, plots 

and statistics of the exact wind field are only included when they become relevant enough to the 

discussion. 

4.5.2 Autopilot Performance under Benchmark 2 

Next, the aircraft’s ability to track its states is measured under a coordinated turn maneuver.  Figure 4.7 

shows the error between the commanded course angle rate, airspeed, and altitude states during a 

coordinated turn at a commanded 10 deg/s course angle rate in zero wind. 
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Figure 4.7: Command Tracking Error for Benchmark 2 in Zero Wind 

Like in benchmark 1, it can be seen how an initial pitch angle of zero creates a small initial error in 

commanded airspeed and attitude.  However, it also creates a small disturbance in the initial course 

angle rate.  This simulation could be started once the aircraft is in full a coordinated turn, or the initial 

condition required for pitch to avoid these oscillations could be done, but it is not necessary to analyze 

the ability of the autopilot to maintain a coordinated turn.  In fact, it also illustrates how the autopilot is 

also able to enter a coordinated turn.  Table 4.5 below contains the statistics of the error in tracking the 

commanded states for this coordinated turn in zero wind. 

Table 4.5: Command Tracking Statistics for Benchmark 2 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 
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Course Angle Rate (deg/sec) 0.140568 0.49356 0.243822 0.451561 0.000064 5.440359 

Airspeed (meters/sec) -0.00737 0.093255 0.022611 0.090772 0 0.926243 

Altitude (meters/sec) -0.01329 0.15741 0.036695 0.153648 0 1.349807 

Both Figure 4.7 and Table 4.5 show that the error in tracking these states is very small and that the 

autopilot tracks the commanded states for a coordinated turn very well. 

Next, Figure 4.8 shows the error in the command tracking during a coordinated turn in Dryden wind. 

 

Figure 4.8: Command Tracking Error for Benchmark 2 in Light Wind 

Figure 4.8 shows that like benchmark 1 in wind, there is significant oscillation in the error of the course 

angle rate, airspeed, and altitude.  Statistics on the magnitude of this error oscillation is in Table 4.6. 
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Table 4.6: Command Tracking Statistics for Benchmark 2 in Light Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

Course Angle Rate (deg/sec) 0.355298 4.144099 2.773074 3.099569 0.000463 24.04694 

Airspeed (meters/sec) -0.05336 0.215181 0.111793 0.191441 0.000003 3.347057 

Altitude (meters/sec) -0.05581 0.208895 0.164445 0.140365 0 0.731389 

The tracking results for airspeed and altitude for benchmark 2 in wind do not appear to differ much 

from the results for benchmark 1 in wind.  However, the error in the course angle rate for benchmark 2 

in light wind is about double the error in the course angle rate for benchmark 1 in light wind.  While a 

coordinated turn is not always held during severe gusts, this increase in course angle rate error is best 

described by the course angle rate equation (4.17).  Equation (4.17) shows that as course angle 

increases and the difference between course angle and yaw angle increases, the course angle rate 

becomes larger in a sinusoidal fashion and not a linear fashion.  For example, a rate disturbance causing 

a 10 degree difference between the yaw angle and the course angle has a much larger effect on the 

course angle rate when the bank angle is large than when it is small.   Regardless, even in wind, the 

autopilot manages to track its command course rate with a near zero mean error. 

4.5.3 Autopilot Performance under Benchmark 3 

The last benchmark test is a wings level ascent. This benchmark highlights some of the assumptions 

made in the state estimation methods that are described later.  Figure 4.9 below shows the errors in the 

commanded states for a wings level ascent in zero wind. 
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Figure 4.9: Command Tracking Error for Benchmark 3 in Zero Wind 

The command error plots in Figure 4.9 show that the aircraft starts at zero altitude at the commanded 

airspeed and successfully achieves the commanded altitude of 100 meters and airspeed.  It can be 

noticed that there is an excess in airspeed as the aircraft climbs.  This is due to the total energy 

controller driving airspeed up through commanded thrust to account for the insufficient gravitational 

potential energy prior to the aircraft reaching its commanded height.  It can also be seen that there is 

still a small oscillation in course angle rate.  As previously discussed in the straight and level flight 

benchmark, this is due to the noisy inputs of the lateral accelerometer input 𝑦𝑎𝑦, which in turn creates 

small sideslip angles and subsequent non-zero course rate angles. 

Table 4.7 below contains statistics for these errors in commanded state tracking. 
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Table 4.7: Command Tracking Statistics for Benchmark 3 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

Course Angle Rate (deg/sec) -0.00162 0.193157 0.131727 0.14125 0 0.928668 

Airspeed (meters/sec) 3.763075 4.141277 3.763075 4.141277 0 10.24756 

Altitude (meters/sec) -20.9374 32.67926 21.35784 32.4059 0.009374 100 

The statistics on airspeed and altitude are not very revealing.  The error statistics for altitude and 

airspeed have large zero means, but in this benchmark, these large errors are expected to occur.  The 

simulations for this benchmark are terminated when the aircraft reaches 1 meter of its commanded 

altitude, and due to the total energy controller as previously mentioned, airspeed is in excess until the 

commanded altitude is achieved.  What really matters here is the fact that the controller successfully 

brings the aircraft to the commanded airspeed and altitude by the end of the simulation, which for zero 

wind is depicted by Figure 4.9.  The only item of true interest in Table 4.7 is the statistics on the course 

angle rate.  However, the average error of the course angle rate is very close to zero, and the standard 

deviation of the error about its mean is only 0.16 degrees.  In conclusion, these results show that the 

autopilot is able to track the commanded air speed, altitude, and course angle rate well in zero wind. 

Figure 4.10 below shows the performance of the autopilot under Dryden wind. 
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Figure 4.10: Command Tracking Error for Benchmark 3 in Light Wind 

Figure 4.10 shows that the autopilot again successfully drives the initial airspeed and altitude command 

error to zero in Dryden wind.  Table 4.8 below contains the statistics for the errors illustrated in Figure 

4.10. 

Table 4.8: Command Tracking Statistics for Benchmark 3 in Light Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

Course Angle Rate (deg/sec) -0.14144 2.333533 1.12711 2.048018 0.000973 25.95318 

Airspeed (meters/sec) 3.740615 4.14763 3.761287 4.128884 0.003035 11.16299 

Altitude (meters/sec) -21.1698 32.95503 21.50988 32.73398 0.000211 100 

 Table 4.8 shows that the course angle rate error is again small, with its mean being again essentially 

zero.  The standard deviation of the course angle rate error is larger with wind, but that is to be 
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expected, and is the same order of magnitude of the previous wind simulations.  This is still not 

concerning, because it is expected that the aircraft will be blow around by the wind, and these results 

show that the induced course rate error is still quickly driven to zero. 

In conclusion, the autopilot has been shown to perform well in Dryden wind, in that it consistently drives 

the wind-induced errors in commanded airspeed, altitude, and course angle rate to zero in all three 

benchmark maneuvers.  This validates that the set of states identified in (4.11) are sufficient to achieve 

autopilot control of a small UAV in wind, so long as the states are estimated perfectly. 

4.6 Relative Importance of the Chosen States 

Now, a short analysis of the sensitivity of the total energy controller autopilot’s ability to maintain its 

commanded states is included here.  This is not too detailed, as thoroughly analyzing a specific 

autopilot’s sensitivity to state errors is not within the scope of this research.  However, because state 

estimation and controller design are tied so close together, it is necessary to show which of the state 

estimates need to have the most stringent requirements so that the performance of different methods 

of state estimation can be properly assessed. 

This simple autopilot sensitivity analysis was performed by making constant errors in each of the states 

in (4.11), one at a time, keeping all other states equal to their true value.  A more sophisticated analysis 

would involve randomly varying errors, but that is not performed here, as only high level conclusions on 

the effects of poor state estimation is desired.  Table 4.9 below contains the results of such simulations, 

all performed using a benchmark 2 coordinated turn maneuver in light Dryden wind. 

Table 4.9: Sensitivity of the Autopilot’s Command Tracking to Constant State Errors 

State Introduced 
Error 

Course Rate Error 
(deg/s) 

Airspeed Error (m/s) Altitude Error (m) 

  𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 
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BASELINE 0 0.355298 4.144099 -0.05336 0.215181 -0.05581 0.208895 
ℎ +5 m -0.47946 3.352474 0.021929 0.631637 -0.0776 1.111576 
𝑉𝑎 +3 m/s 0.472136 4.118756 -3.04509 0.161344 0.032143 0.233071 
𝜙 -10 deg 7.443571 5.341716 0.528943 1.264033 -0.93142 2.272585 
𝜃 -10 deg -0.5131 3.115593 -0.03362 0.402857 0.018373 0.708731 
𝑝 +5 deg/s -0.51173 3.165355 0.00868 0.436952 -0.0477 0.784684 
𝑞 +5 deg/s 0.012568 0.991571 -0.00944 0.225685 -0.0122 0.35684 
𝑉𝑔 +5 m/s 3.428997 3.855824 0.067841 0.605879 -0.14851 1.086253 
𝑦𝑎𝑦 +1 m/s2 -0.82063 3.501202 -0.07812 0.45316 0.056595 0.86667 

Looking at Table 4.9 by commanded state individually, the autopilot’s ability to track the desired course 

rate is most sensitive to the roll angle 𝜙, as a 10 degree error in the roll angle estimate creates a steady 

state tracking error of about 7 deg/s.   If the commanded course rate by the navigation layer controller 

cannot compensate for the autopilot not successfully tracking a desired course rate, this could cause a 

small UAV to perform indefinite circling maneuvers.  Further, if this error is large enough, the aircraft 

could attempt to perform turns that are too sharp for it to maintain flight, and cause it to eventually 

crash.   

It should also be noted that the course angle rate is also sensitive to the ground speed estimate 𝑉𝑔 .  This 

makes sense, as the coordinated turn equation (4.17) shows that ground speed is inversely proportional 

to the course angle rate.  When an excess ground speed is estimated, the autopilot’s roll hold equation 

(4.4) will think the actual course angle rate is smaller than it really is, resulting in a larger roll angle and 

faster turn. 

Next, the largest cause for error in airspeed tracking is the measurement of airspeed itself.  The 

autopilot controls airspeed by directly measuring airspeed and commands correction to any error in 

what it measures with thrust.  In most small UAV applications, maintaining airspeed is only critical to 

avoid stall.  Thus, airspeed will be considered here to be one of the least important measures of state 

estimator performance, so long as the magnitude of the airspeed errors stay well below the difference 

between the flight speed and the stall speed. 
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Last, the largest error in altitude isn’t due to error only in one state estimate.  Errors in commanded 

altitude tracking are affected by errors in the estimates for altitude, roll, pitch, pitch rate, ground speed, 

and side specific force.  This makes sense because the autopilot does not track altitude directly.  The 

altitude command only appears in the equation for total energy, which outputs commanded thrust.  

Altitude is changed most directly by changing pitch, but commanded pitch is only a function of 

commanded airspeed.  Thus, if pitch is off, the only effect is the aircraft performs a slow oscillation in 

altitude and subsequent airspeed.  This notion is backed up by a simulation with an exaggerated pitch 

angle error of 30 degrees, the results of which are in Figure 4.11 below. 

 

Figure 4.11: Effects of Bad Pitch Estimation 

The effect of a pitch error is that the autopilot is commanding the appropriate pitch angle based on 

altitude, but instead tracks an offset in pitch angle.  This causes the aircraft to pitch up or down, 

depending on the sign of the pitch angle error, and climb away or descend from the desired altitude, 

which in turn affects airspeed.  Fortunately though, the increased airspeed that is accompanied with a 

decrease in pitch and flight path angle results in an increased pitch command, and thus the aircraft 

never crashes; it instead oscillates in altitude.  Moreover, the autopilot also employs saturation on 

elevator deflection so that an extreme pitch angle is never reached.  Thus, an error in pitch angle results 

in an undesired and interesting oscillation in altitude and subsequently airspeed.  Fortunately though, an 

aircraft is still able to get to its destination this manner. 
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In conclusion, roll angle 𝜙 is the most important state to estimate correctly, as errors in it can cause the 

aircraft to indefinitely circle or in some extreme cases crash due to trying to undergo turns that are too 

sharp.  Unfortunately, the state estimation methods used later in this document show that this is also 

the most difficult state to estimate. 

4.7 Autopilot Summary 

This section has shown that a total energy controller autopilot is sufficient to control the RECUV 

Tempest small UAV in the zero wind, light wind, and heavy winds that are outlined in section 4.3.4, 

under the 3 benchmark maneuvers described in section 4.3.  This proves that that the states listed in 

(4.11), ℎ, 𝑝, 𝑞, 𝜙, 𝜃, 𝑉𝑎 , 𝑉𝑔,  and 𝑦𝑎𝑦, are sufficient information for an autopilot to control a small UAV in 

wind.  

The set of states in (4.11) are the set of states that this research will focus on estimating.  Again, 

estimating air data states are not in the scope of this research.  Air data states are more critical to 

autopilots for full scale aircraft, as illustrated by [15], and air data states may be necessary for particular 

small UAV applications, such as for wind energy harvesting.    
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5 Method 1: IMU Attitude, Smoothed GPS, and Pressure Sensors 

5.1 Description 

Because of their required small size and low cost, small UAVs typically possess three types of sensors as 

input to their state estimators: micro-electro-mechanical systems (MEMS) gyros, MEMS accelerometers, 

and a GPS receiver.  Thanks to the recent explosion of the demand for these devices in personal 

electronic devices, the cost of these sensors has dropped and supply has increased dramatically.  

Sometimes small UAVs also have other sensors, like three axis magnetometers (TAMs), horizon sensors, 

cameras [16], or range finders [17].  All of these additional sensors can present their own unique 

implementation issues, but more importantly, they are not inherently critical to state estimation for 

autopilot control, which will be shown shortly. 

Gyro and accelerometer sensors are often bundled together into a single unit which is often called an 

inertial measurement unit (IMU) or inertial navigation system (INS).  Two main methods exist to 

estimate the state of an aircraft from an IMU and a GPS receiver.  These two methods, which are 

described shortly, involve different approaches.  Method 1 does not use a priori information at each 

time step, and instead simplifies the equations of motions to get estimated states.  It uses two different 

EKFs to take care of sensor errors and errors induced by simplifying the equations of motion.  Method 2 

uses a priori information to numerically integrate its sensor inputs to propagate its position, velocity, 

and attitude estimates from the last time step, without needing to simplify the equations of motion.  It 

then uses an EKF to smooth and filter the estimate.  
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5.1.1 The Transport Theorem 

Both of the state estimation methods in this paper rely on measurements of inertial acceleration, 

aircraft angular rates, and inertial (GPS) position and velocity measurements.  To begin the description 

of the equations of motion used in these methods, an equation is needed to relate the states to these 

measurements.  This is provided by [18] as the transport theorem in equation (5.1). 

 𝒂𝐵/𝑁 =
𝑑

𝑑𝑡

𝐵
𝑽𝐵/𝑁 +𝜔𝐵/𝑁 × 𝑽𝐵/𝑁 (5.1) 

Now, for the purposes of this document, it is simpler to write everything in body frame coordinates like 

in equation (5.2). 

 [𝒂𝐵/𝑁]
𝐵

=
𝒅

𝒅𝒕

𝑩
[𝑽𝐵/𝑁] + [𝜔𝐵/𝑁]

𝐵
× [𝑽𝐵/𝑁]
𝐵

 (5.2) 

In body frame components, the inertial acceleration of the aircraft [𝒂𝐵/𝑁]
𝐵

 can be related to the 

accelerometer measurements 𝑦𝑎𝑥 , 𝑦𝑎𝑦 , 𝑦𝑎𝑧 through the use of the gravity vector 𝒈.  This is because the 

accelerometers measure acceleration with respect to the 𝑁 frame plus the acceleration due to gravity.   

Because the 𝑁 frame is fixed to a point on the Earth’s surface, any point that is not changing position 

relative to the 𝑁 frame experiences the same gravity. Thus, the acceleration due to gravity must be 

taken out of the accelerometer readings to obtain the acceleration of the aircraft relative to the 𝑁 

frame.  The gravity vector is defined in inertial 𝑁 frame components as the acceleration due to gravity 𝑔 

in the downward direction, as written in equation (5.3). 

 [𝒈]𝑁 = [
0
0
𝑔
] (5.3) 
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The gravity vector can be rewritten in terms of aircraft 𝐵 frame components through the use of the 

rotation matrix defined in equation (3.4).  So, its relationship to the inertial acceleration as reported by 

the accelerometers is given in equation (5.4). 

 [𝒂𝐵/𝑁]
𝐵

= [

𝑦𝑎𝑥
𝑦𝑎𝑦
𝑦𝑎𝑧

] + 𝑹𝐵𝑁 [
0
0
𝑔
] (5.4) 

Now, the transport theorem of equation (5.2) can be written entirely in body 𝐵 frame component form, 

as in equation (5.5). 

 [

𝑦𝑎𝑥
𝑦𝑎𝑦
𝑦𝑎𝑧

] + 𝑹𝐵𝑁 [
0
0
𝑔
] =

𝑑

𝑑𝑡
[
𝑢
𝑣
𝑤
] + [

𝑝
𝑞
𝑟
] × [

𝑢
𝑣
𝑤
] (5.5) 

Substituting equations (3.3) and (3.4) into (5.5) and solving yields equation (5.6). 

 [

𝑦𝑎𝑥
𝑦𝑎𝑦
𝑦𝑎𝑧

] = [

�̇� + 𝑞𝑤 − 𝑟𝑣 + 𝑔 sin 𝜃
�̇� + 𝑟𝑢 − 𝑝𝑤 − 𝑔 cos 𝜃 sin𝜙
�̇� + 𝑝𝑣 − 𝑞𝑢 − 𝑔 cos 𝜃 cos𝜙

] (5.6) 

This transport theorem based relationship (5.6) is the basis of the kinematics behind both methods of 

state estimation. 

 

5.1.2 Attitude Determination 

The first method of state estimation that is analyzed in this paper is derived in [4], but is also used in [5].   

The method first realizes that by making a few assumptions, the transport theorem relationship (5.6) 

can be used to solve for the attitude roll and pitch angles given accelerometer measurements and 

angular rates.   These assumptions are: 
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1) The inertial velocity of the aircraft along its axes is constant, as described by equation (5.7). 

 (�̇� = �̇� = �̇� = 0) (5.7) 

This assumption is made simply because there is no means to directly measure these quantities.  It 

should be noted though that even though the body frame components of the inertial velocity vector 

are assumed constant, that doesn’t mean the inertial frame components of the velocity vector are 

not changing.  For instance, in a perfect coordinated turn, the body frame components of the 

velocity vector do not change, while the inertial frame components do.   This assumption will be re-

addressed later with simulation results. 

 

2) The velocity of the air relative to the vehicle is solely due to the inertial velocity of the aircraft, which 

in other words means that the wind velocity vector 𝑽𝑤 is zero.  This greatly simplifies the 

relationship in equation (3.9).  Equation (5.8) is this simplified relationship written in body frame 

coordinates, substituting in equation (3.10) for 𝑽𝑎. 

 [
𝑢
𝑣
𝑤
] = 𝑉𝑎 [

cos 𝛼 cos𝛽
sin𝛽

sin𝛼 cos𝛽
] (5.8) 

This has huge implications when the purpose of this estimator is perform well in wind.  The effects 

of this assumption will be addressed in the simulation results. 

 

3) Although it has already been assumed that there is zero wind, that doesn’t mean that the sideslip 

angle is always zero in non-stalled conditions, even if the airframe is designed to maintain zero 

sideslip in normal flight.  Although it is typically not done, the autopilot could induce a slipping turn 

where sideslip is used to turn the aircraft.  In any case, in significantly varying wind, sideslip will 

arise.  However, this method assumes sideslip to be zero because there is no direct measure for 

sideslip. This simplifies the above equation (5.8) further to equation (5.9). 

  [
𝑢
𝑣
𝑤
] = 𝑉𝑎 [

cos𝛼
0
sin𝛼

] (5.9) 

 

4) The final assumption assumes that angle of attack 𝛼 is close to the pitch angle.  In both steady turns 

and significant wind, this is not the case.  However, just like sideslip, without sophisticated air data 
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sensors, there is no direct measure of the angle of attack.  Thus, equation (5.9) becomes equation 

(5.10).  The validity of this will again be addressed in the simulation results. 

 [
𝑢
𝑣
𝑤
] = 𝑉𝑎 [

cos 𝜃
0
sin𝜃

]  (5.10) 

With these assumptions, the transport theorem relationship in equation (5.6) is simplified to equation 

(5.11) 

 [

𝑦𝑎𝑥
𝑦𝑎𝑦
𝑦𝑎𝑧

] = [

𝑞𝑉𝑎 sin𝜃 + 𝑔 sin 𝜃
𝑟𝑉𝑎 cos 𝜃 − 𝑝𝑉𝑎 sin 𝜃 − 𝑔 cos 𝜃 sin𝜙

−𝑞𝑉𝑎 sin𝜃 − 𝑔 cos𝜃 cos𝜙
]  (5.11) 

This gross simplification enables calculating the pitch and roll attitude angles from the accelerometers 

and angular rates.  With the assumptions that were required to obtain this relationship, large errors can 

be expected in turning flight, accelerating flight, and in significant amounts of wind.    

This method attempts to combat these expected errors by first applying low pass filters to the gyro 

inputs.  Performing low pass filters on the sensor inputs removes high frequency noise in the sensors 

and high frequency vehicle dynamics.  Without sensing high frequency dynamics, equation (5.11) will 

not be as affected by high frequency angular rate dynamics.  This avoids high frequency measurement 

error 𝜂 in EKF 1 that is about to be discussed.  However, the effects of such removal of high frequency 

dynamics on the actual attitude estimates is assessed in the simulation results.  The angular rates 

needed in equation (5.11) are obtained through equation (5.12).    

 [

�̂�𝑚𝑒𝑡ℎ𝑜𝑑1
�̂�𝑚𝑒𝑡ℎ𝑜𝑑1
�̂�𝑚𝑒𝑡ℎ𝑜𝑑1

] =

[
 
 
 
 𝐿𝑃𝐹 (𝑦𝑔𝑦𝑟𝑜𝑝)

𝐿𝑃𝐹 (𝑦𝑔𝑦𝑟𝑜𝑞)

𝐿𝑃𝐹 (𝑦𝑔𝑦𝑟𝑜𝑟)]
 
 
 
 

 (5.12) 
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In this state estimation method, these angular rates are considered to be the final estimate, and are also 

used as inputs to later steps of this method’s state estimation process.  Second, the accelerometers 

inputs are used without filtering as in equation (5.13). 

 [

𝑦𝑎𝑥,𝑚𝑒𝑡ℎ𝑜𝑑1
𝑦𝑎𝑦,𝑚𝑒𝑡ℎ𝑜𝑑1
𝑦𝑎𝑧,𝑚𝑒𝑡ℎ𝑜𝑑1

] = [

𝑦𝑎𝑥
𝑦𝑎𝑦
𝑦𝑎𝑧

] (5.13) 

It is important to realize that the process of removing bias from both the gyro and accelerometer 

sensors is expected to be done in a manual calibration procedure outside of this state estimation 

process.  For short duration flights, a manual calibration by leveling the aircraft on the ground can be 

sufficient, such as is mentioned in [4].  However, for longer flights this requires periodic manual in-flight 

calibration.  This requires another inertial measurement system, such as on-board video to ensure 

straight and level flight, to perform the calibration procedure. Such a requirement, depending on the 

application, may not be allowable.  Thus, the effects of drifting gyro biases, which is common for 

cheaper sensors, is also simulated in this document. 

5.1.3 Extended Kalman Filter 1 

Reference [4] demonstrates that a using a simple low pass filter on both accelerometer and gyro inputs 

for use in equation (5.11) is not enough to avoid the errors encountered from the assumptions used to 

derive equation (5.11).  It shows that fast changes in attitude angles are sometimes completely missed, 

resulting in large errors in the attitude angles that last a few seconds.  To overcome this, this method 

augments these low pass filters with an extended Kalman Filter (EKF).  Reference [4] is not very clear on 

whether or not one should remove the low pass filters for both the gyros and accelerometer sensors 

prior for use by the Kalman filter, but it is chosen for this demonstration to keep the low pass filters on 

the gyro sensors and use the accelerometer sensors as is, since as is about to be discussed, the gyro 
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sensors are used as inputs to EKF1, and the accelerometers are the measurements.  Note however 

though the cutoff frequency of the low pass filter was set such that optimal performance was obtained, 

which was about 10 Hz.  Tweaking or removing this method of filter could affect the high frequency 

dynamics of the results, and further research could investigate this area.   

This EKF uses the angular rates from equation (5.12) and the airspeed from a pre-calibrated pitot-static 

sensor as the inputs 𝒖𝐸𝐾𝐹1, as described in equation (5.14).  

 𝒖𝐸𝐾𝐹1 = [𝑝𝐿𝑃𝐹  𝑞𝐿𝑃𝐹  𝑟𝐿𝑃𝐹  𝑉𝑎,𝐿𝑃𝐹 ]
𝑇

 (5.14) 

While an airspeed sensor is not part of an IMU, cheap pitot-static tube based airspeed sensors are 

readily available for use on small UAVs, as discussed by [19].  However, before the airspeed sensor’s 

input is treated as truth for this EKF, it is also passed through a low pass filter, as shown in the block 

diagram of this method in Figure 5.1 and written in equation (5.15). 

 𝑉𝑎,𝐿𝑃𝐹 = 𝐿𝑃𝐹(𝑦𝑉𝑎) (5.15) 

Now, the purpose of this EKF is to estimate the attitude.  Thus, the EKF uses the roll and pitch angles as 

the states it’s estimating, as depicted by equation (5.16). 

 𝒙𝐸𝐾𝐹1 = [ 𝜙 𝜃 ]
𝑇 (5.16) 

Note that the yaw angle 𝜓 is not included here, and is found from EKF2, which is discussed shortly.  

Finally, the EKF uses the low pass filtered accelerometer sensors as the measurements: 

 𝒚𝐸𝐾𝐹1 = [ 𝑦𝑎𝑥𝑦𝑎𝑦  𝑦𝑎𝑧]𝐿𝑃𝐹

𝑇
 (5.17) 
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The low pass filtered angular rates 𝑝, 𝑞, and 𝑟 in equation (5.14) cannot be treated as measurements for 

this EKF because they are needed to define the time derivative of the roll and pitch angle states that are 

being estimated.  This relationship to the state derivatives is written in equation (5.18).  This relationship 

is the 𝑭𝐸𝐾𝐹1 matrix that is needed to define part of the EFK state-space relationship in (3.11).  Equation 

(5.18) comes from the definition of 3-2-1 Euler angle rates that is provided in equation (3.8). 

 𝑭𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1, 𝒖𝐸𝐾𝐹1) = [
1 sin𝜙 tan𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙

] [

𝑝𝐿𝑃𝐹
𝑞𝐿𝑃𝐹
𝑟𝐿𝑃𝐹

] (5.18) 

Multiply the two matrices in equation (5.18) yields equation (5.19). 

 𝑭𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1, 𝒖𝐸𝐾𝐹1) = [
𝑝𝐿𝑃𝐹 + 𝑞𝐿𝑃𝐹 sin𝜙 tan𝜃 + 𝑟𝐿𝑃𝐹 cos𝜙 tan𝜃

𝑞𝐿𝑃𝐹 cos𝜙 − 𝑟𝐿𝑃𝐹 sin𝜙
] (5.19) 

Last, the Jacobian of 𝑭𝐸𝐾𝐹1 with respect to the states is needed for the EKF time update via the 

linearized equation (3.22).  Computing the Jacobian yields equation (5.20). 

 
𝜕𝑭𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1,𝒖𝐸𝐾𝐹1)

𝜕𝒙𝐸𝐾𝐹1
= [
𝑞𝐿𝑃𝐹 cos𝜙 tan𝜃 − sin𝜙 tan𝜃

𝑞𝐿𝑃𝐹 sin𝜙+𝑟𝐿𝑃𝐹 cos𝜙

cos2 𝜃

−𝑞𝐿𝑃𝐹 sin𝜙 − 𝑟𝐿𝑃𝐹 cos𝜙 0
] (5.20) 

Now, the measurement relationship 𝑯𝐸𝐾𝐹1needed for the EKF in equation (3.12) comes directly from 

the simplified transport theorem relationship in equation (5.11), but taking care to use EKF input low 

pass filtered angular rates and airspeed.  This relationship is depicted in equation (5.21). 

 𝑯𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1, 𝒖𝐸𝐾𝐹1  ) = [

𝑞𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 sin𝜃 + 𝑔 sin𝜃

𝑟𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 cos 𝜃 − 𝑝𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 sin𝜃 − 𝑔 cos𝜃 sin𝜙

−𝑞𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 sin 𝜃 − 𝑔 cos 𝜃 cos𝜙
] (5.21) 

Now, the Jacobian of the 𝑯𝐸𝐾𝐹1 matrix is needed for the measurement update.  This is directly 

computed from equation (5.21) to be equation (5.22). 
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𝜕𝑯𝐸𝐾𝐹1

𝜕𝒙𝐸𝐾𝐹1
= [

0 𝑞𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 cos𝜃 + 𝑔 cos𝜃

−𝑔 cos𝜙 cos 𝜃 −𝑟𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 sin𝜃 − 𝑝𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 cos 𝜃 + 𝑔 sin𝜙 sin 𝜃

𝑔 sin𝜙 cos𝜃 (𝑞𝐿𝑃𝐹𝑉𝑎,𝐿𝑃𝐹 + 𝑔 cos𝜙) sin 𝜃

] (5.22) 

This is how EKF 1 obtains high frequency estimates of the roll and pitch angles.  It is a piece of the 

Method 1 estimation algorithm, as depicted in the flow diagram in Figure 5.1.  

5.1.4 Extended Kalman Filter 2 

Now, another process is needed to determine the remaining states that are listed in (4.11), which are 

the altitude ℎ and the ground speed 𝑉𝑔.  Note that it is also necessary to calculate the course angle 𝜒 so 

that a navigational layer algorithm can track a desired course.  In [3], altitude comes from a low pass 

filter on a barometric pressure sensor to obtain frequently updated altitude information, as depicted by 

equation (5.23). 

 ℎ = 𝐿𝑃𝐹(𝑦ℎ𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ) (5.23) 

This removes the necessity for the altitude ℎ, or position 𝑝𝑑, to be part of the Kalman filter that is about 

to be discussed. 

Now, the determination of inertial velocities and position is fairly involved.  This method uses the known 

attitude to “smooth” the GPS measurements to determine high frequency estimates for the states in 

(5.24) using a second EKF that for the purposes of this paper is called EKF 2.   

 𝒙𝐸𝐾𝐹2 = [ 𝑝𝑛 𝑝𝑒𝑉𝑔 𝜒 𝑤𝑛 𝑤𝑒 𝜓 ]
𝑇

 (5.24) 

GPS updates for low cost receivers are typically on the order of 1-2 updates per second, so this method 

uses EKF 1 information to propagate the inertial velocities and positions between GPS updates.  Such an 

act is necessary because updates on inertial position data are simply not frequent enough for autopilots 
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to counteract the high frequency dynamics small UAVs experience.  See reference [2] for more 

information on the high frequency nature of small UAVs.  It should be noted, however, that the method 

here is to smooth the existing GPS data given what data is available between GPS updates.  The 

accelerometers have already been used to determine the attitude, and they are not reused here 

because they do not give direct mappings to all of the state derivatives, such as �̇�𝑛 and �̇�𝑒  .  Such a 

relationship would involve numerically integrating accelerometer inputs (see Method 2).   

Instead, to accomplish this smoothing, EKF 2 uses the attitude output of EKF1 as well as the inputs to 

EKF1 as its truth inputs, which is depicted in equation (5.25). 

 𝒖𝐸𝐾𝐹2 = [ �̂�𝐸𝐾𝐹1 �̂�𝐸𝐾𝐹1 𝑝𝐿𝑃𝐹  𝑞𝐿𝑃𝐹  𝑟𝐿𝑃𝐹 𝑉𝑎,𝐿𝑃𝐹]
𝑇

 (5.25) 

EKF 2 uses only the GPS measurements, as depicted by (5.26). 

 𝒚𝐸𝐾𝐹2 =

[
 
 
 
 
 
𝑦𝑝𝑛,𝐺𝑃𝑆
𝑦𝑝𝑒,𝐺𝑃𝑆
𝑦𝑉𝑔,𝐺𝑃𝑆
𝑦𝜒𝐺𝑃𝑆
0
0 ]

 
 
 
 
 

 (5.26) 

Equation (5.26) assumes that the GPS sensor provided a north position 𝑦𝑝𝑛,𝐺𝑃𝑆, east position 𝑦𝑝𝑒,𝐺𝑃𝑆, 

ground speed 𝑦𝑉𝑔,𝐺𝑃𝑆 , and course angle 𝑦𝜒𝐺𝑃𝑆 .  This is slightly different form the GPS measurements that 

are used in method 2, which are discussed later.  The last two measurements listed in (5.26) are zero.  

These corresponds to two “pseudo-measurements” that this method uses to represent the measured 

wind in the north and east directions.  Assuming that the flight path angle of the aircraft is zero and that 

the wind has no vertical component, these “pseudo-measurements” are related to components of the 

EKF states x and truth inputs 𝑢 as follows: 

 𝑦5𝐸𝐾𝐹2 = 0 = 𝑉𝑎 cos𝜓 + 𝑤𝑛 − 𝑉𝑔 cos 𝜒 (5.27) 
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 𝑦6𝐸𝐾𝐹2 = 0 = 𝑉𝑎 sin𝜓 + 𝑤𝑒 − 𝑉𝑔 sin𝜒 (5.28) 

This assumption of flat wind and level flight will be addressed in the simulation results.  Realizing that 

the remainder of the GPS estimates match directly up with their state vector counterparts in equation 

(5.24), the measurement-to-state relationship 𝑯𝐸𝐾𝐹2 in equation (3.12) can now be written as equation 

(5.29). 

 𝑯𝐸𝐾𝐹2(𝒙𝐸𝐾𝐹2, 𝒖𝐸𝐾𝐹2) =

[
 
 
 
 
 

𝑝𝑛
𝑝𝑒
𝑉𝑔
𝜒

𝑉𝑎 cos𝜓 + 𝑤𝑛 − 𝑉𝑔 cos𝜒

𝑉𝑎 sin𝜓 + 𝑤𝑛 − 𝑉𝑔 sin𝜒 ]
 
 
 
 
 

 (5.29) 

Though it is large, the Jacobian that is required for the measurement update in equations (3.15) and 

(3.16) is fairly straightforward to derive from equation (5.29).  This measurement update Jacobian is in 

equation (5.30).   

 
𝜕𝑯𝐸𝐾𝐹2(𝒙𝐸𝐾𝐹2,𝒖𝐸𝐾𝐹2)

𝜕𝒙𝐸𝐾𝐹2
=

[
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 −cos 𝜒 𝑉𝑔 sin 𝜒 1 0 −𝑉𝑎,𝐿𝑃𝐹 sin𝜓

0 0 − sin 𝜒 −𝑉𝑔 cos𝜒 0 1 𝑉𝑎,𝐿𝑃𝐹 cos𝜓 ]
 
 
 
 
 

 (5.30) 

 

Now, in order to relate the state derivatives to the states and inputs as is needed for EKF relationship 

(3.11), some additional assumptions had to be made.  

1) An assumption is made that the flight path angle is zero. This yields the relationships (5.31) and 

(5.32). 

 �̇�𝑛 = 𝑉𝑔 cos 𝜒 (5.31) 

 �̇�𝑒 = 𝑉𝑔 cos𝜒 (5.32) 
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2) Next, assumptions that wind and airspeed are constant had to be made to yield the following 

relationships (5.33) and (5.34).  Detailed derivation of these are found in [4]. 

 �̇�𝑔 =
(𝑉𝑎 cos𝜓+𝑤𝑛)(−𝑣𝑎�̇� sin𝜓)+(𝑉𝑎 sin𝜓+𝑤𝑒)(𝑉𝑎�̇� cos𝜓)

𝑉𝑔
 (5.33) 

 �̇� = 𝑞
sin𝜙

cos𝜃
+ 𝑟

cos𝜙

cos𝜃
 (5.34) 

Assumption 2 that was performed as part of the attitude determination process assumed that wind 

speed was zero, but it did not assume that airspeed was constant.  Here, wind must be taken into 

account in order to for relationship (5.33) to somewhat properly measure ground speed at each 

time update of EKF2.  Since the assumption of zero wind was used to determine the attitude, the 

estimated yaw rate could be expected to suffer from this, and thus affect the ground speed 

estimate.  Using an assumption of constant airspeed just lets equation (5.33) neglect higher order 

terms of airspeed, for which there is no information. These assumptions will make themselves 

apparent and be discussed in the simulation results.  Note that equation (5.34) itself does not 

involve any assumptions about the motion of the aircraft, and is just necessary for the calculation of 

(5.33). 

3) Last, an assumption that the aircraft always experiences coordinated turns (even in wind) was used 

to derive the relationship (5.35). 

 �̇� =
𝑔

𝑉𝑔
tan𝜙 cos(𝜒 − 𝜓) (5.35) 

It should be noted that in the transport theorem simplification (5.7) that was used forEKF1, it was 

assumed that the aircraft was not accelerating.  While that assumption is not made here, errors in 

the roll angle and yaw angle could be expected to make their way through EKF1.  The existence of 

such errors would have an effect on this coordinated turn relationship (5.35) and thus the estimated 
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course angle rate.  One of the benchmarks is a coordinated turn, and this will be discussed with the 

results of that simulation. 

Placing these simplified relationships together yields the 𝑭𝐸𝐾𝐹2  matrix that is needed by the EKF 

relationship (3.11).  This relationship is written in equation (5.36). 

 𝑭𝐸𝐾𝐹2 (𝒙𝐸𝐾𝐹2, 𝒖𝐸𝐾𝐹2) =

[
 
 
 
 
 
 
 
 
 

𝑉𝑔 cos𝜒

𝑉𝑔 sin𝜒

(�̂�𝑎,𝐿𝑃𝐹 cos𝜓+𝑤𝑛)(−�̂�𝑎,𝐿𝑃𝐹�̇� sin𝜓)+(�̂�𝑎,𝐿𝑃𝐹 sin𝜓+𝑤𝑒)(�̂�𝑎,𝐿𝑃𝐹�̇� cos𝜓)

𝑉𝑔
𝑔

𝑉𝑔
tan𝜙 cos(𝜒 − 𝜓)

0
0

�̂�
sin �̂�

cos �̂�
+ �̂�

cos �̂�

cos �̂� ]
 
 
 
 
 
 
 
 
 

 (5.36) 

 

Now, the Jacobian of 𝑭𝐸𝐾𝐹2 that is needed for the time update equation (3.22) can be derived from 

(5.36) to (5.37). 

 
𝜕𝑭𝐸𝐾𝐹2(𝒙𝐸𝐾𝐹2,𝒖𝐸𝐾𝐹2)

𝜕𝒙𝑬𝑲𝑭𝟐
=

[
 
 
 
 
 
 
 
 
0 0 cos𝜒 −𝑉𝑔 sin𝜒 0 0 0

0 0 sin𝜒 𝑉𝑔 cos 𝜒 0 0 0

0 0 −
𝑉�̇�

𝑉𝑔
0 −

�̇�𝑉𝑎,𝐿𝑃𝐹 sin𝜓

𝑉𝑔

�̇�𝑉𝑎,𝑃𝐿𝐹 cos𝜓

𝑉𝑔

𝜕𝑉𝑔

𝜕𝜓

0 0
𝜕�̇�

𝜕𝑉𝑔

𝜕�̇�

𝜕𝜒
0 0

𝜕�̇�

𝜕𝜓

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

 (5.37) 

Note the zeroes in the last three rows of the Jacobian for 𝑤�̇�, 𝑤�̇�, and �̇�.  This comes from the 

assumptions that wind speed is constant and the fact that yaw rate does not depend on any of the 

states of EKF2.  This just means that the time update will not update the covariance matrix for wind 

speed or course angle.  The equations for the partials used above are: 
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𝜕𝑉𝑔

𝜕𝜓
= −

�̇�𝑉𝑎,𝐿𝑃𝐹(𝑤𝑛 cos𝜓+𝑤𝑒 sin𝜓)

𝑉𝑔
 (5.38) 

 
𝜕�̇�

𝜕𝑉𝑔
= −

𝑔

𝑉𝑔
2 tan �̂� cos(𝜒 − 𝜓) (5.39) 

 
𝜕�̇�

𝜕𝜒
= −

𝑔

𝑉𝑔
tan �̂� sin(𝜒 − 𝜓) (5.40) 

 
𝜕�̇�

𝜕𝜓
=
𝑔

𝑉𝑔
tan �̂� sin(𝜒 − 𝜓) (5.41) 

This concludes the description for EKF2, and its place in Method 1’s algorithm can be seen in Figure 5.1. 

5.1.5 Method 1 Summary 

Now that EKF 2 is in place, it can be noticed that nothing has actually estimated the inertial velocities 

𝑢, 𝑣, 𝑤. While they are not needed for the minimum set of states (4.11), they can still be backed out 

from the output estimated states 𝒙𝐸𝐾𝐹2 if the wind is zero. A zero wind assumption is necessary for this 

because the inertial velocities are related to the wind vector through (3.9) and (3.10) in body frame 𝐵 

component form as depicted by equations (5.42) and (5.43).  

 [𝑽𝑎] =
𝐵 [𝑽𝐵/𝑁]

𝐵
− [𝑽𝑤]
𝑩  (5.42) 

 𝑉𝑎 [

cos𝛼 cos𝛽
sin𝛽

sin𝛼 cos𝛽
] = [

𝑢
𝑣
𝑤
] − [

𝑤𝑥
𝑤𝑦
𝑤𝑧
] = [

𝑢
𝑣
𝑤
] − 𝑹𝐵𝑁 [

𝑤𝑛
𝑤𝑒
𝑤𝑑
] (5.42) 

Moreover, in this estimator, angle of attack 𝛼 and angle of sideslip 𝛽 are not available.  In EKF 1, sideslip 

was assumed be zero and angle of attack was assumed to be equivalent to the pitch angle.   Further, it 

should be noted that many assumptions were made to come up with the EKF that estimates wind.  

Simulation of this filter even in zero wind show that the estimates for the wind are unacceptable.  This is 
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likely due to many sensor and modelling errors manifesting themselves in the wind estimate.  Thus, it 

has been observed through simulation that simply leaving these wind terms out of the equation 

produces far better estimates of the inertial velocities.  Thus, equation (5.42) simplifies to equation 

(5.43). 

 [
𝑢
𝑣
𝑤
] = 𝑉𝑎 [

cos 𝜃
0
sin𝜃

] (5.43) 

Again, inertial velocity information is not necessary for the autopilot input states listed in (4.11), but this 

simplification in (5.3) provides a comparison point between methods 1 and 2.  

So, in conclusion, method 1 produces high frequency information for the following states, listed in Table 

5.1. 

 

State Used by Autopilot Noteworthy Comment 

𝑝𝑛 N  

𝑝𝑒  N  

ℎ Y Directly from low pass filter of pressure sensor. 

𝑝 Y Directly from low pass filter of gyro. 

𝑞 Y Directly from low pass filter of gyro. 

𝑟 Y Directly from low pass filter of gyro. 

𝑢 Y Equal to 𝑉𝑎 cos𝜃, assumes zero wind. 

𝑣 Y Always zero 

𝑤 Y Equal to 𝑉𝑎 sin𝜃, assumes zero wind. 

𝑉𝑔 N  

𝜙 Y See section 5.1.2 for assumptions. 

𝜃 Y See section 5.1.2 for assumptions. 

𝜓 N  

𝑤𝑒 N Pseudo-estimate that contains other errors 

𝑤𝑑 N Pseudo-estimate that contains other errors 

𝜒 N  
Table 5.1: Summary of States Captured by Method 1 
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Note that some of the states not used in the autopilot system here could be used in a navigation layer 

controller. However, straight GPS measurements are usually sufficient for navigation layer control. 

Below in Figure 5.1 is a flow diagram that summarizes this method.

 

 

Figure 5.1: Method 1 Flow Chart 

 

5.2 Detailed Simulation Results 

Now that method 1 has been presented in detail, the effectiveness of this method can be assessed 

simulating the state estimation method.  The simulation setup that is used here is the same that was 

described in section 4.3.  To assess the effectiveness of the estimation method, the states that are 

needed by autopilot control, which are listed in (4.11), are deeply scrutinized.  The results shown in this 

section contain plots of the state estimates that state estimation method 1 produces on the same plots 
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as the true states that the simulation produces.  Again, the simulations here use a linearized model of 

the RECUV Tempest small UAV.  Nonlinear effects of wind on the dynamics of the aircraft are not taken 

into account.  The fact that these simulations do not involve a nonlinear aerodynamic model is discussed 

in section 0 on future studies.   

Furthermore, the autopilot previously discussed is used to maintain the benchmark maneuvers here.  

The autopilot is fed the true states that the simulation provides and not the estimated states that 

method 1 provides.  The purpose of this is to assess the dynamics of the state estimation methods 

individually so that their strengths and weaknesses can be judged without the effects of closed loop 

control on the state estimation. 

5.2.1  Zero Wind 

5.2.1.1 Benchmark 1: Straight and Level, without Gyro Bias Drift 

All simulations in this document, except the one in this immediate section, were performed with a linear 

rate gyro bias drift of 
1

30
 
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑2
  on each gyro axis.  This creates a total bias drift of 3

𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 over the 

course of the 90 second simulations.  The rate gyro bias will always begin at zero, as it is assumed that 

the gyro rate biases are calibrated out at the beginning of each simulation.  However, the gyro bias is 

not included here to better illustrate the basic results of a benchmark 1 maneuver in zero wind.   The 

plots below contain results of this simulation.  The plots contain both the true value of the states listed 

in (4.11) and the estimated value of the states listed in (4.11) that method 1 generates.   
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Figure 5.2: Method 1 State Estimation for Benchmark 1 in Zero Wind and Zero Gyro Bias Drift 

This shows that method 1 was able to successfully converge on an estimate of the states in straight and 

level flight and zero wind.  It is important to elaborate in detail on the results here, as this is used as the 

base results that are compared against in the rest of this section.  To do this, Table 5.2 below contains 

statistics on the error between the estimated values of the each state and the true values of each state.  

The sign convention that is used for the non-absolute value terms in the state error statistics tables in 

this document is the estimated value subtracted from the true value.  So, if an estimated value of a state 

is larger than the true value of the state, the error will be negative. 

Table 5.2 : Statistics of Method 1 State Error for Benchmark 1 in Zero Wind and Zero Gyro Bias 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 
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ℎ (𝑚)  -0.01583 0.26844 0.213742 0.163156 0.000075 1.110218 

𝑉𝑎  (𝑚/𝑠)  -6.4E-05 0.007263 0.005578 0.004651 0 0.116425 

𝜙 (𝑑𝑒𝑔)  0.032404 2.433725 1.907496 1.511661 0.000052 10.92272 

𝜃 (𝑑𝑒𝑔)  -0.02229 0.986594 0.426362 0.889977 0.000041 43.50571 

𝑝 (𝑑𝑒𝑔/𝑠)  -0.04444 1.579859 1.240624 0.979087 0.000235 5.599666 

𝑞 (𝑑𝑒𝑔/𝑠)  -0.06805 1.631634 1.262134 1.036195 0.000295 17.64951 

𝑉𝑔  (𝑚/𝑠)  0.024623 0.067741 0.0585 0.042102 0.00001 0.300109 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00376 0.096081 0.075681 0.059308 0.000007 0.34756 

The results here show that the mean of the errors are all essentially zero.  State estimation method 1 

made many assumptions of straight and level flight and zero wind, and this shows that there is in fact no 

bias in the estimates when flying in straight and level flight with zero wind.  Now, although the mean of 

the errors is zero, the values are not always zero.  The standard deviation of the errors and the mean of 

the absolute values of the errors both reflect how much error there typically is in the estimate for 

straight and level flight with zero wind. The errors in the ground speed 𝑉𝑔,  side specific force 𝑦𝑎𝑦, pitch 

angle 𝜃, altitude ℎ, and airspeed 𝑉𝑎 are very small.  However, the errors in roll angle 𝜙, roll rate 𝑝, and 

pitch rate 𝑞 are not negligible.    The roll angle estimate is shown to typically vary by about 2 degrees, 

and the pitch rate typically vary about 1 deg/s.  While such a variance is not ideal, it is to be expected 

given the noisy nature small UAV sensors.  Roll error of 2 degrees is within the tolerance of what a 

human pilot would fly a small UAV at, and the autopilot sensitivity analysis of section 4.6 show how only 

steady state errors of 10 degrees begin to seriously affect the autopilot’s ability to track the states.  

Now, the source of this error can be strictly attributed to sensor noise.  A simulation was performed 

with zero sensor noise, and the following estimation performance was achieved. 

 

Table 5.3: Statistics of Method 1 State Error for Benchmark 1 in Zero Wind, Zero Gyro Bias, and Zero Sensor Noise 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0 0.001846 0.00038 0.001807 0 0.021227 
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𝑉𝑎  (𝑚/𝑠)  0 0.002356 0.000109 0.002354 0 0.116063 

𝜙 (𝑑𝑒𝑔)  -4.5E-05 0.00281 0.000045 0.00281 0 0.231522 

𝜃 (𝑑𝑒𝑔)  -0.00778 0.851058 0.039712 0.850167 0 43.59248 

𝑝 (𝑑𝑒𝑔/𝑠)  0 0 0 0 0 0 

𝑞 (𝑑𝑒𝑔/𝑠)  -8E-06 0.346004 0.012717 0.34577 0 19.39894 

𝑉𝑔  (𝑚/𝑠)  14.99637 0.016945 14.99637 0.016945 14.74299 15.18658 

𝑦𝑎𝑦  (𝑚/𝑠
2)  0 0 0 0 0 0 

 

All of the errors are essentially exactly zero.  Thus, for method 1 in straight and level flight in zero wind, 

and without gyro bias drift, the errors are solely attributable to sensor noise and not the system model. 

5.2.1.2 Benchmark 1: Straight and Level 

Next, the same simulation as the previous section was performed, but the gyro rate bias drift of 

1

30
 
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑2
 on each of the 3 axes was added back into the simulation.  Below are the results of this 

simulation. 
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Figure 5.3: Method 1 State Estimation for Benchmark 1 in Zero Wind 

Table 5.4: Error Statistics of Method 1 State Estimation for Benchmark 1 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.009319 0.263634 0.21069 0.158728 0.000008 0.999435 

𝑉𝑎  (𝑚/𝑠)  0.00013 0.007123 0.00544 0.004599 0.000001 0.114609 

𝜙 (𝑑𝑒𝑔)  -2.43329 2.84864 3.000781 2.2429 0.000158 16.11988 

𝜃 (𝑑𝑒𝑔)  -0.02924 0.174277 0.135 0.114019 0.000023 1.950974 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.5435 1.865565 1.95948 1.422327 0.000516 7.854573 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56711 1.818091 1.967571 1.374701 0.000305 17.64951 

𝑉𝑔  (𝑚/𝑠)  0.474439 0.456241 0.488593 0.441049 0.003294 1.709627 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00376 0.096081 0.075681 0.059308 0.000007 0.34756 
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These results show there are a number of differences in the performance of state estimation method 1 

when compared with the zero bias drift simulation of the previous section.   They are similar to the zero 

gyro bias drift simulation of the previous section, but with a few exceptions. 

First, the results show an accumulation of error in the estimated ground speed 𝑉𝑔.   This makes sense, as 

the system model’s time update equation for ground speed is affected by the input angular rates. The 

time update equation (5.33) for 𝑉𝑔 calculates the change in ground speed from airspeed and yaw angle, 

as depicted in equation (5.33).  The time update equation (5.34) for the yaw angle 𝜓 is affected by the 

angular rates, and as depicted in Figure 5.4, EKF2 does sufficiently correct for yaw angle error over time.  

 

Figure 5.4: Estimated Yaw Angle for Benchmark 1 in Zero Wind 

IT makes sense that this unbounded yaw drift occurs, as EKF2 has no state or other mechanism that 

accounts for gyro bias.   The EFK2 time update equation of (5.36) relates the yaw angle to the direct roll 

and yaw rate inputs, which are just low pass filtered and do not account for sensor bias.  Then, the 

covariance matrix update equation of (5.37) defines the time rate of change of the yaw angle as zero.  It 

should also be noted that this drift does not occur when gyro bias drift is not present.  The yaw angle 

estimate of the previous section is shown in Figure 5.5. 

 

Figure 5.5: Estimated Yaw Angle for Benchmark 1 in Zero Wind and Zero Gyro Bias Drift 
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When gyro rate bias was zero, EKF2 was able to estimate the yaw angle within bounds of about 5 

degrees.   

The degradation of the yaw angle when gyro bias drift is present directly feeds into the ground speed 

time update equation of (5.33).   Corrections to this propagated error in the ground speed are 

performed by the measurement model in equation (5.29), which equates the GPS provided ground 

speed to the ground speed estimate.  However, over time, inaccurate models in the time update cause 

the covariance matrix to place far less than 100% weight on the GPS measurements.  Thus, the jagged 

behavior of substantial 𝑉𝑔 errors being partially corrected once a second in Figure 5.3 is observed. 

The reason the degradation in yaw angle estimate occurs is because the yaw angle is not really 

observable, and thus the Kalman filter gives very little weight to updating the estimate for 𝜓 based on 

GPS inputs.  Unfortunately, a traditional linear system observability analysis using the state-to-

measurement matrix in equation (5.30) and state derivative relationships in (5.37) does not yield much 

insight, as such an analysis yields a full rank observability matrix.  The problem lies in the fact that the in 

the state-to-measurement relationship (5.30), the yaw angle is only affected by “pseudo-

measurements”.  As discussed in section 5.1.4 and is shown in equations (5.27) and (5.28), these 

“pseudo-functions” are functions of inputs and states – namely the estimated airspeed 𝑉𝑎, ground speed 

𝑉𝑔, course angle 𝜒, the estimated wind velocity components 𝑤𝑛, and 𝑤𝑒, and even the yaw angle 𝜓!  If 

EFK2 was setup such that there were not fake measurements, the matrix in (5.30) would not have 

equations for the last three states - 𝑤𝑛, 𝑤𝑒 , and 𝜓.  Thus, the observability matrix would not be full rank.  

In conclusion, if an estimate for 𝑉𝑔  is desired that is not affected by angular rate errors, interpolating 

GPS measurements would be one better approach.   This topic could be an area of future work. 

Second, the results in Figure 5.3 show a drift in the estimate of the angular rate 𝑝 and 𝑞 and the 

estimate for the bank angle 𝜙.   The fact that the angular rate bias drift shows in the attitude estimate is 
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because of the time and measurement update equations for EKF1.  The attitude propagation equation 

(5.19), even in straight and level flight where 𝜙 = 𝜃 = 0, propagates the error in the angular rates 𝑝, 𝑞, 𝑟   

into both the bank and pitch angle estimates.  Equation (5.44) below is equation (5.19) in straight and 

level flight conditions. 

 𝑭𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1, 𝒖𝐸𝐾𝐹1) = [
𝑝𝐿𝑃𝐹
𝑞𝐿𝑃𝐹

]  (5.44) 

This would imply that both the pitch and bank angle estimates are affected by angular rate biases.  

However, it can be recalled that unlike the time update equations, the measurement update equations 

of EKF1 take gravity into account.  At straight and level flight, the calibrated accelerometer 

measurements are equal to the opposite of the gravity vector: 

 [

𝑦𝑎𝑐𝑐𝑒𝑙𝑥
𝑦𝑎𝑐𝑐𝑒𝑙𝑦
𝑦𝑎𝑐𝑐𝑒𝑙𝑧

] ≅ [
0
0
−𝑔
] (5.45) 

Now, if the bank angle 𝜙 is assumed to be about 0, the measurement to state relationship becomes: 

 𝑯𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1, 𝒖𝐸𝐾𝐹1  ) = [

(𝑞𝑉𝑎,𝐿𝑃𝐹 + 𝑔) sin𝜃

𝑟𝑉𝑎,𝐿𝑃𝐹 cos 𝜃 − 𝑝𝑉𝑎,𝐿𝑃𝐹 sin 𝜃

(−𝑞𝑉𝑎,𝐿𝑃𝐹 − 𝑔) cos 𝜃

] = [
0
0
−𝑔
] = [

𝑦𝑎𝑐𝑐𝑒𝑙𝑥
𝑦𝑎𝑐𝑐𝑒𝑙𝑦
𝑦𝑎𝑐𝑐𝑒𝑙𝑧

] (5.55) 

The best solution to this system of equations is a pitch angle close to zero.  The top equation of the 

above relationship is only satisfied when 𝜃 = 0.  If 𝜃=0, the second two relationships are also closely 

satisfied as long as the centripetal acceleration terms (𝑟𝑉𝑎,𝐿𝑃𝐹  and 𝑞𝑉𝑎,𝐿𝑃𝐹) are small, which is indeed 

the case in straight and level flight.  Thus, when EKF1 finds an optimal solution for the pitch angle, it is 

always very close to zero.  Additional simulations that were performed that are not presented here 

show that if the centripetal acceleration terms are very large, such as with angular rate biases of 50 

degrees per second, the pitch angle estimate can become off by 1-5 degrees. 
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Conversely, if the pitch angle 𝜃 is assumed to be zero, the measurement to state relationship becomes: 

 𝑯𝐸𝐾𝐹1(𝒙𝐸𝐾𝐹1, 𝒖𝐸𝐾𝐹1  ) = [

0
𝑟𝑉𝑎,𝐿𝑃𝐹 − 𝑔 sin𝜙

−𝑞𝑉𝑎,𝐿𝑃𝐹 − 𝑔 cos𝜙
] = [

0
0
−𝑔
] = [

𝑦𝑎𝑐𝑐𝑒𝑙𝑥
𝑦𝑎𝑐𝑐𝑒𝑙𝑦
𝑦𝑎𝑐𝑐𝑒𝑙𝑧

] (5.56) 

The best solution to this system of equations is a non-zero bank angle 𝜙, as solving these equations for 

𝜙 relates 𝜙 to only the angular rates and gravity.  By finding a minimum error estimate to these 

equations, EFK1 continuously “corrects” the roll angle to this non-zero value that incorporates the 

incorrect angular rates.  That is why the gyro bias drifts appear in the bank angle estimate but not the 

pitch angle estimate in this simulation. The time update equations add the angular rate errors to the 

estimate, but the measurement update equations corrects for it, resulting in different behavior for the 

two different Euler angles.  Finally, it is important to note that this behavior is only the case when the 

estimated pitch and bank angle are close to zero.   In other commanded maneuvers, 𝜙 and 𝜃 can’t 

always assumed to be zero. 

5.2.1.3 Benchmark 2: Coordinated Turn 

Next, below in Figure 5.6 are the results for simulating state estimation method 1 in zero wind.  Just like 

the previous section, gyro rate bias drifts of 
1

30
 
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑2
 on each axis were included. 
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Figure 5.6: Method 1 Results for Benchmark 2 in Zero Wind 

Table 5.5: Error Statistics of Method 1 State Estimation for Benchmark 2 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -0.02615 0.267583 0.215338 0.160962 0.000014 0.983516 

𝑉𝑎  (𝑚/𝑠)  0.000005 0.007345 0.00556 0.004799 0.000002 0.112739 

𝜙 (𝑑𝑒𝑔)  -1.99478 2.543703 2.59284 1.930397 0.00045 11.9702 

𝜃 (𝑑𝑒𝑔)  -0.25169 0.272464 0.285705 0.236546 0.000138 3.891958 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.5435 1.869367 1.962648 1.422945 0.000645 8.955241 

𝑞 (𝑑𝑒𝑔/𝑠)  1.181991 1.7954 1.705016 1.308937 0.00027 15.87927 

𝑉𝑔  (𝑚/𝑠)  0.476404 0.310111 0.479903 0.304668 0.000072 1.433798 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00378 0.096415 0.075702 0.059823 0.000002 0.710144 
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These results are very similar to the benchmark 1 results in Figure 5.3.  Even the standard deviations of 

the error in attitude are very similar.   However, it can be noticed that there is now a steady-state 

constant error in the pitch angle. This is due to the assumption that the aircraft is in straight and level 

unaccelearated flight.  In a coordinated turn, there is an increase in the z-axis component of the 

measured acceleration.  The measurement model assumes that an increase in vertical acceleration is 

due to a change in the orientation of the gravity vector and thus due to an increase in the pitch angle.  In 

a coordinated turn, the vertical acceleration increases due to the turn, and not a change in the pitch 

angle.  In mathematical terms, equation (5.10) assumes that the body vertical component of inertial 

velocity is a function of the airspeed and the sine of the pitch angle.  In benchmark 2, the body vertical 

component of the velocity is non-zero while the pitch angle is zero, which breaks this assumption.  This 

behavior is illustrated in Figure 5.7. 

 

Figure 5.7: Validity of Method 1 Assumptions in Benchmark 2 and Zero Wind 
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Figure 5.7 shows that the assumptions made in method 1 in order to back out attitude directly from the 

transport theorem equations without a-priori data are correct in this case, with the exception of the 

body frame inertial velocity component 𝑤.  The fluctuations seen in the first second of the plot are initial 

fluctuations in angular rates that the autopilot induces at the beginning of the simulation, and can be 

ignored for now until these dynamics are later analyzed.  The benchmark 1 simulations previously 

discussed had zero error on all of these assumptions, and more errors in these assumptions will be 

discussed later. 

Last, for comparison, Figure 5.8 below contains the visual results of a benchmark 2 simulation in zero 

wind and zero gyro bias drift. 
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Figure 5.8: Method 1 Results for Benchmark 2 in Zero Wind and Zero Gyro Bias Drift 

As expected, the drift in 𝑉𝑔 and 𝜙 disappears when gyro bias drift is removed, but the steady state error 

in the pitch angle remains.  

5.2.1.4 Benchmark 3: Wings Level Ascent 

Now, the last benchmark maneuver that is simulated is a wings level ascent from zero altitude to the 

commanded altitude.  Figure 5.9 below contains the state tracking results of estimation method 1 during 

this maneuver in zero wind.  To show the effects of rate gyro bias drift, for just this benchmark, the drift 

rate was accelerated to 
3

20

𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑2
 so that the gyro measurements drifted by 3 degrees over the time it 

took for the aircraft to climb to its commanded altitude. 
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Figure 5.9: Method 1 Benchmark 3 Results in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.365771 0.574592 0.519614 0.440316 0.000137 2.066185 

𝑉𝑎  (𝑚/𝑠)  0.000456 0.038864 0.018327 0.034272 0.000004 0.265422 

𝜙 (𝑑𝑒𝑔)  -2.7123 3.614769 3.661495 2.648307 0.00206 20.19237 

𝜃 (𝑑𝑒𝑔)  0.732737 8.955657 4.204742 7.940546 0.001127 59.16003 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.36551 1.825752 1.86311 1.313774 0.001403 6.191559 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.61983 2.688693 2.260978 2.177071 0.001985 28.90685 

𝑉𝑔  (𝑚/𝑠)  0.174749 1.56939 1.104937 1.127849 0.001232 5.173123 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00692 0.092843 0.073451 0.057185 0.000001 0.266522 

Figure 5.10: Error Statistics for Method 1 in Benchmark 3 and Zero Wind 

 

These results highlight a major inherent flaw in this state estimation method.  In the attitude 

determination step via the simplified transport theorem, two main assumptions were made.  Equation 

(5.7) presents the assumption that the aircraft was not accelerating along its body axes.  This is not the 
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case during a climbing maneuver using the total energy controller, as the total energy controller 

increases airspeed during the first half of the climb, and then decreases it as it nears its commanded 

total energy.  This is in direct violation of the assumption that �̇� = 0.  The second assumption of 

equation (5.10) assumes that the aircraft is close to level flight.  By taking pitch to be the same as the 

angle of attack, it is assuming that the vector of the incoming air 𝑽𝑎 is parallel to the ground.  This is not 

accurate in the climb scenario because in a climb, the angle of attack is not large, and the incoming air is 

still almost entirely opposite of the direction of travel (parallel to the body x frame).  Equation (5.10) 

claims that in a climb 𝑤 is large, where in reality, it is still near zero.  Figure 5.11 compares the assumed 

values of the variables determined in equations (5.7) and (5.10) with their true values during this 

simulation. 

 

Figure 5.11: Method 1Assumption Validity for Benchmark 3 in Zero Wind 

The effect of the errors introduced by these two assumptions can be seen directly in the results in Figure 

5.9.   However, the effect of each assumption can be measured separately by artificially providing 
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method 1 the true values for 𝑢, 𝑣, and 𝑤.  This can be done by replacing the measurement model of 

equation (5.30) with equation (5.57) below. 

 [

𝑦𝑎𝑥
𝑦𝑎𝑦
𝑦𝑎𝑧

] = [

�̂�𝑤 − �̂�𝑣 + 𝑔 sin 𝜃

�̂�𝑢 − �̂�𝑤 − 𝑔 cos 𝜃 sin �̂�

�̂�𝑣 − �̂�𝑢 − 𝑔 cos 𝜃 cos �̂�

] (5.57) 

Note that all variables in equation (5.57) are method 1’s estimated values or inputs, and only 𝑢, 𝑣, and 𝑤 

are the true values.  Also take note that this is the same as the full transport theorem equation (5.6), but 

still retaining the zero body frame acceleration assumption of equation (5.7).  The results of a simulation 

of this modification are shown in Figure 5.12. 

 

Figure 5.12: Method 1 State Estimation with True Inertial Velocity Values 
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Figure 5.12 seems to indicate that at least some of the error in the pitch estimate is due to the non-zero 

�̇�, as pitch angle errors only occur when �̇� is non-zero.  This makes sense, as the simplified transport 

theorem relationship (5.11) must account for excess acceleration in the x direction by adjusting pitch, as 

roll is not dependent on x axis acceleration.   As shown in Figure 5.12, when the acceleration ceases 

about 3 seconds into the simulation, the estimate for the pitch angle begins to approach its true value.  

However, when airspeed begins to decrease as the aircraft approaches its target altitude, and before the 

pitch is decreased, the estimate for pitch becomes too low.   

Now, it can be noticed that the spike in estimated bank angle that appears 8 seconds into the simulation 

occurs at the same time as an abrupt period of non-zero pitch rate 𝑞.  It can also be noticed that the 

spike does not appear in the true 𝑢, 𝑣, 𝑤 simulation in Figure 5.12, and that at 8 seconds in the 

simulation, there is an error in the estimated 𝑢, 𝑣, and w.    It makes sense that this error goes away 

when the true inertial velocity components are used to calculate the centripetal acceleration terms, as 

the only time those terms are non-zero is when the angular rates are non-zero.  With excess magnitude 

on the right hand side of equation (5.11), the change must be accounted for in the estimate of the 

attitude.  Because it is the pitch rate that is now non-zero, the first equation in (5.11) is used to indicate 

that pitch should be much larger. 

At the beginning of the simulation, the pitch rate is positive, and according to the first equation in (5.11), 

the subsequent pitch angle should be smaller.  Interestingly, the change in estimated pitch angle due to 

the pitch rate is the opposite sign of the change in pitch due to inaccurate measurement of �̇� both at 

both location in the simulation.  This makes sense as both a non-zero X axis acceleration and a positive 

pitch rate are equivalent to an increase in pitch with respect to the gravity vector.  When one of those 

equivalent increases in pitch are taken away, such as in Figure 5.12, the estimated pitch angle will be 

increased. 
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This behavior could be a key area for improving upon this state estimation method by future work. This 

analysis shows that the state estimates are very sensitive to maneuvers where the change in body frame 

velocity components are non-zero or there are significant angular rates that cause large centripetal 

acceleration terms in the transport theorem.  This is a large part of the reason why this method 

performs so poorly in wind, which is about to be discussed. 

5.2.2 Dryden Wind 

Now that the performance of method 1 has been characterized and the causes of error found, the same 

simulations will be performed in a Dryden wind field to see how these errors compound and new 

sources of error appear.  For more information on the Dryden wind field that is used in these 

simulations, see section 4.3.4.  

 

5.2.2.1 Benchmark 1: Straight and Level 

Figure 5.13 below contains the state estimation results of method 1 under straight and level flight 

conditions in Dryden wind. 
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Figure 5.13: Method 1 Results for Benchmark 1 in Dryden Wind 

Table 5.6: Error Statistics for Method 1 State Estimation for Benchmark 1 in Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.009912 0.263184 0.210142 0.158744 0.000028 1.017485 

𝑉𝑎  (𝑚/𝑠)  -0.00013 0.031237 0.019976 0.024014 0.000002 0.280067 

𝜙 (𝑑𝑒𝑔)  -2.48169 5.422106 4.67493 3.701529 0.00012 26.76654 

𝜃 (𝑑𝑒𝑔)  -0.08141 6.245348 4.825204 3.965579 0.000603 29.17006 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.54382 2.015224 2.046104 1.502586 0.000406 7.948609 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56719 1.967791 2.073747 1.423953 0.000015 7.773666 

𝑉𝑔  (𝑚/𝑠)  0.422333 0.676247 0.602575 0.522072 0.000118 3.267293 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00368 0.107917 0.082943 0.069133 0.000019 1.100337 

When comparing these results to the zero wind results for benchmark 1 in section 5.2.1.2, it should be 

noticed that state estimates become significantly noisier.  The mean of the errors for states other than 

the ones previously shown to be affected by the gyro bias drifts (ℎ, 𝑉𝑎 , 𝜃, and 𝑦𝑎𝑦) remain close to zero.  
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The mean of the error of the gyro bias drift affected states (𝑝, 𝑞, 𝑉𝑔, and 𝜙) are similar to what was seen 

in the zero wind simulation for benchmark 1.   These statistics show that in this case, the wind is only 

causing an increase in the standard deviation of the error. 

To investigate why this occurs, it can first be recalled that the Dryden wind model produces disturbances 

at a spectrum of frequencies to both the wind speed and angular rate disturbances on the aircraft.  The 

wind speed oscillations create translational aerodynamic forces on the aircraft that in turn affect the 

accelerations measured by the accelerometers.  The rate disturbances directly put large oscillations on 

the angular rates of the aircraft, which affect both the estimated angular rates and the accelerometers 

due to the centripetal acceleration terms in the rigid body dynamics equations.  As Figure 5.14 shows, 

these disturbances on the aircraft’s motion create errors in assumption (5.7) for zero change in body 

frame inertial velocity components and in assumption (5.10) for the body frame inertial velocity 

components being strictly relative to the air velocity. 

 

Figure 5.14: Assumption Validity for Benchmark 1 in Dryden Wind 
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 Figure 5.14 indicates that the equation for 𝑤 in (5.10) is actually fairly accurate.  This makes sense 

because the wind experienced in the vertical direction is small, as shown in Figure 4.4, and because the 

aircraft is flying only in small disturbances about level flight.  Because the changes in pitch due to the 

wind is small, and the dynamics of the aircraft point it into the wind, the pitch angle changes closely with 

the vertical wind component.  However, Figure 5.14 indicates that the estimates for 𝑢 and 𝑣 are not 

accurate.  This makes sense, because the aircraft is always pointed into the wind with zero sideslip, 

meaning that the aircraft is flying at an airspeed 𝑉𝑎 relative to the wind, and not the ground.  The error 

seen on 𝑢 is due to the aircraft not travelling at 𝑉𝑎 relative to the ground, and the constant error seen on 

𝑣 is due to the aircraft having a non-zero crab angle.  If the aircraft were flying at a zero crab angle 

(directly into or away from the wind), then 𝑣 would be close to its true value.  Nonetheless, if the 

average values of the error are taken away from the 𝑢 and 𝑣 estimates, a highly variable component 

would remain.  This is simply due to variations of the wind speed and its effect on the ground velocity of 

the aircraft. Finally, below are the results of using the true values of 𝑢, 𝑣, and 𝑤 in method 1, as is 

depicted in equation (5.57), for benchmark 1 in Dryden wind. 

Table 5.7: Error Statistics for Benchmark 1 in Dryden Wind with True Inertial Velocity Values 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -0.00465 0.258631 0.203887 0.159175 0.000024 1.396879 

𝑉𝑎  (𝑚/𝑠)  -0.00029 0.031291 0.020139 0.02395 0.000001 0.272728 

𝜙 (𝑑𝑒𝑔)  -3.11832 6.752448 5.82259 4.62755 0.000946 32.69921 

𝜃 (𝑑𝑒𝑔)  -0.72317 6.829383 5.289714 4.379421 0.002258 39.27843 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.54382 2.015224 2.046104 1.502586 0.000406 7.948609 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56719 1.967791 2.073747 1.423953 0.000015 7.773666 

𝑉𝑔  (𝑚/𝑠)  0.439593 0.706454 0.629366 0.544238 0.000004 2.95929 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00368 0.107917 0.082943 0.069133 0.000019 1.100337 

These results are almost identical to the results achieved with method 1’s original estimates for 𝑢, 𝑣, 

and w.  The only distinguishable difference is there is actually a small increase in the standard deviation 

of the error in pitch and bank.  This makes sense, because it should be recalled from equation (5.11) that 
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the pitch and bank angles are calculated assuming that the angle of the gravity vector and the 

centripetal acceleration terms are the only pieces of information that affect acceleration. When �̇�, �̇�, 

and �̇� are not zero, as  Figure 5.14 shows,  the attitude estimates will suffer regardless of whether the 

centripetal acceleration terms are correct or not.   The values of the centripetal acceleration terms 

determined by method 1 were smaller in magnitude than the actual estimates.  When the true values 

were added back in, they only added more uncertainty into the relationship, resulting in a larger 

variance of the attitude estimates.  

To further back the notion that the acceleration measurement errors are the source of the error, the 

instantaneous values of acceleration can be directly mapped to individual fluctuations in the estimated 

pitch and bank angles.  Figure 5.15 is a zoomed in version of the original method 1 simulation in Dryden 

wind. 
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Figure 5.15: Assumption (5.7) to Estimated Attitude Zoom Comparison 

Figure 5.15 highlights the direct correlation between the actual value for 𝑣 ̇ and the bank angle 𝜙.  It also 

highlights the correlation between the combination of magnitude of acceleration in the body Z axis, �̇�, 

and the magnitude of acceleration in the -X axis, −�̇�, with the pitch angle 𝜃.   In conclusion, this 

illustrates that reasoning that assumption (5.7) is the main source of the increased error seen in this 

windy scenario. 

As a tie in for method 2, and for the possibility of future work, this analysis shows that methods of 

finding information on the rate of change of the body frame velocity components would be very 

beneficial.  Outside of this document, simple tweaks like artificially increasing expected accelerometer 

sensor noise and removing the low pass filter were tried, but neither had much effect on the quality of 

the estimates.  Increasing the expected accelerometer noise only decreased the frequency of the 
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random deviations in the attitude errors, and did not modify the magnitude.   Removing the low pass 

filters did not have any noticeable affect because, likely because the low pass filter cutoff frequencies 

used in this document were already tweaked by trial and error to attitude estimate with the least error.  

However, it was noticed that if the cutoff frequencies of the low pass filters were set very low, the error 

oscillations would decrease, but the error magnitude would increase. 

5.2.2.2 Benchmark 2: Coordinated Turn 

Figure 5.16 below contains the results of simulating benchmark 2 for a coordinated turn in the Dryden 

wind field. 

 

Figure 5.16: Method 1 Results under Benchmark 2 and Dryden Wind 
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Table 5.8: Error Statistics for Method 1 under Benchmark 2 and Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.008504 0.27609 0.22095 0.165751 0.000038 1.04847 

𝑉𝑎  (𝑚/𝑠)  0.000026 0.027756 0.017566 0.02149 0 0.261154 

𝜙 (𝑑𝑒𝑔)  -3.41256 5.397888 5.010868 3.958847 0.001032 25.33505 

𝜃 (𝑑𝑒𝑔)  -0.08103 6.011813 4.219042 4.283242 0.000336 39.69093 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.5443 1.881663 1.966788 1.434262 0.000155 10.47874 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56605 1.88061 2.018227 1.384117 0.000825 10.2309 

𝑉𝑔  (𝑚/𝑠)  0.583431 0.783121 0.78459 0.581427 0.000096 2.861224 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00369 0.106615 0.082276 0.067899 0.000003 1.447511 

The first aspect of these results that should be noted is that the estimated bank angle 𝜙 and ground 

speed 𝑉𝑔 still exhibit the signature of degraded estimates from gyro bias drift.  In fact, the mean error 

that is listed in Table 5.8 for benchmark 2 in wind is almost exactly the same as the mean error observed 

in benchmark 1 for straight and level flight in wind, which is in Table 5.6.  This indicates that a 

coordinated turn in wind does not create any more steady state error for bank angle. 

The second thing that should be noticed from these results is the oscillation in the true bank angle.  This 

oscillation in bank angle is due to the autopilot’s reliance on the ground speed to determine the course 

angle rate as depicted in equation (4.4).  Because the aircraft is kept at a constant airspeed, the ground 

speed varies as the aircraft performs its circular maneuver in the wind field.  Because the ground speed 

is different at different locations in the turn, equation (4.4) dictates that in order to maintain a 

coordinated turn, the commanded bank angle must also different at different locations in the turn.  This 

oscillation in bank angle is not perfectly sinusoidal because the autopilot will cause the aircraft to turn 

slower when the airspeed is lower.  It can also be noted that the oscillation in pitch angle that was 

observed is due to the autopilot’s inability to maintain altitude in a sharp turn where there is varying 

pitch rate.  Studying in more detail and adjusting the autopilot’s behavior in such a turn is outside of the 

scope of this research, and it also gives a variety of pitch angles to assess the performance of the state 

estimator at. 
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That being said, it can be noticed that steady state pitch error that was observed in benchmarks 2 in 

zero wind is not very detectable in these results.  That error is still in these results, as just as in the zero 

wind condition in a coordinated turn, the acceleration measured opposite of the Z axis is larger than 

gravity.  The measurement equation (5.11) captures this excess acceleration in the pitch angle because 

even if assumption (5.7) holds, the estimated vertical velocity 𝑤 is inaccurate.  This inaccuracy is 

depicted in Figure 5.17 below. 

 

Figure 5.17: Method 1 Assumption Validity under Benchmark 2 in Dryden Wind 

In addition to the assumption (5.10) error for 𝑤, Figure 5.17 shows how the true values for 𝑢 and 𝑣 

change as the aircraft turns through the wind field.  Just like discussed in the previous section, 

assumption (5.10) is only valid in the zero wind case.  However, as also discussed in the previous section, 

the effects of these errors are miniscule in comparison to the errors in assumption (5.7). 
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The steady state error in pitch isn’t very detectable here because of the large standard deviation of the 

error.  The standard deviations of the attitude errors in benchmark 1 in wind is essentially identical to 

the standard deviations of the attitude here, but benchmark 1 did not have any steady state error in 

pitch, just like benchmark 1 in zero wind.   

Next, the magnitude of the estimation error for benchmark 2 in wind are nearly identical to the state 

estimation error for benchmark 1 in wind.  Similarly, the magnitude of the estimation error for 

benchmark 2 in zero wind was essentially identical to the magnitude of the estimation error for 

benchmark 1 in zero wind.  While the increase in error in wind for both benchmarks has been attributed 

to assumption (5.7), it could be interesting to see what affect removing the angular rate biases from the 

wind would have on the estimation performance.  Table 5.9 below contains statistics of such a 

simulation. 

Table 5.9: Error Statistics for Method 1 in Benchmark 2 in Dryden Wind with No Angular Rate Disturbances 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.014131 0.273638 0.218413 0.165432 0.000003 1.170085 

𝑉𝑎  (𝑚/𝑠)  -2.7E-05 0.028042 0.017927 0.021562 0.000001 0.263253 

𝜙 (𝑑𝑒𝑔)  -3.71141 5.792228 5.395587 4.26736 0.001475 26.56745 

𝜃 (𝑑𝑒𝑔)  -0.06719 6.169774 4.370888 4.354749 0.000866 37.16324 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.54406 2.017114 2.047613 1.50331 0.000058 8.126008 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56714 1.964096 2.071286 1.422386 0.000097 7.632921 

𝑉𝑔  (𝑚/𝑠)  0.492612 0.750946 0.69957 0.563171 0.000349 3.324215 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00369 0.106183 0.081806 0.06779 0.000007 1.447511 

It should be noticed that these results are almost identical to the results for benchmark 2 in Dryden 

wind with the angular rate disturbances included.  This makes sense, as it was previously proven that 

the accuracy of the centripetal acceleration terms of the transport theorem don’t have much relative 

bearing on the accuracy of the solution when compared to  
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While the rate disturbances do affect the true values for �̇�, 𝑣,̇  and �̇� in the rigid body dynamics of the 

aircraft, this leads one to wonder why the changes in those quantities are what they are.  Part of those 

values is the wind, but part of those values is also the autopilot’s reaction to the wind and its reaction to 

follow its commanded course.  Unfortunately, it’s not really possible to separate the state estimation 

from the closed loop behavior, as fixing the aircraft’s motion to a certain path would violate the reality 

that the aircraft is perturbed by the wind and would negate any of those effects on the state estimation.  

However, it can be recognized the more abrupt changes are that the autopilot makes, the more state 

estimation method 1 would be affected due to the subsequent change in the rate of change of the body 

components of the inertial velocity vector.   

 [

𝑓𝑥/𝑚
𝑓_𝑦 /𝑚
𝑓𝑧/𝑚

] = [

�̇� + 𝑞𝑤 − 𝑟𝑣 + 𝑔 sin 𝜃
�̇� + 𝑟𝑢 − 𝑝𝑤 − 𝑔 cos𝜃 sin𝜙
�̇� + 𝑝𝑣 − 𝑞𝑢 − 𝑔 cos 𝜃 cos𝜙

] (5.58) 

Equation (5.58) is the equation of motion for a rigid body aircraft.  It shows that the rate of change of 

the body components of the inertial velocity vector, �̇�, �̇�,  and �̇�, are functions of the translational force 

the aircraft is experiencing, the angular rates of the aircraft, and the attitude of the aircraft.  All control 

mechanisms on an aircraft affect these directly, and so the design of an autopilot may exacerbate or 

mitigate some of the behaviors observed here.  However, the design of the autopilot to mitigate these 

issues is not the scope of this work.   The goal of this work is to bring forward these insights so the 

designers of a closed loop system can be aware of these concerns. 

 

5.2.2.3 Benchmark 3: Wings Level Ascent 

The final simulation of method 1 is for benchmark 3, a wings level ascent, in the same Dryden wind field 

as the previous simulations.  
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Figure 5.18: Method 1 Results for Benchmark 3 in Dryden Wind 

Table 5.10: Error Statistics for Method 1 State Estimation for Benchmark 3 in Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.014131 0.273638 0.218413 0.165432 0.000003 1.170085 

𝑉𝑎  (𝑚/𝑠)  -2.7E-05 0.028042 0.017927 0.021562 0.000001 0.263253 

𝜙 (𝑑𝑒𝑔)  -3.71141 5.792228 5.395587 4.26736 0.001475 26.56745 

𝜃 (𝑑𝑒𝑔)  -0.06719 6.169774 4.370888 4.354749 0.000866 37.16324 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.54406 2.017114 2.047613 1.50331 0.000058 8.126008 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56714 1.964096 2.071286 1.422386 0.000097 7.632921 

𝑉𝑔  (𝑚/𝑠)  0.492612 0.750946 0.69957 0.563171 0.000349 3.324215 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00369 0.106183 0.081806 0.06779 0.000007 1.447511 

In simple terms, these results are very similar to the results obtained for benchmark 3 in zero wind; they 

are just noisier.  This state estimation method still exhibits the large pitch angle errors that were found 

to be associated with non-level flight in zero wind. The mean of the bank angle error in Table 5.10 still 
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indicates a small magnitude drift of the bank angle estimate. The cause of this was determined 

previously to be the measurement update equations of EKF1.   However, like the benchmark 3 

simulation in zero wind, the estimate for the ground speed does not become too far off over the course 

of this short simulation.  This makes sense, as over the course of this simulation, the yaw angle error 

only gets to about 45 degrees, and with GPS measurement updates once per second, the covariance 

matrix still places plenty of weight on the GPS ground speed measurement.   

Last, the standard deviation of the error of the attitude angles is in family with the standard deviations 

seen in the other two benchmark maneuvers in wind.   Figure 5.19 below shows the error of the two 

assumptions in method 1. 

 

Figure 5.19: Method 1 Assumption Validity for Benchmark 3 in Dryden Wind 

The error shown in Figure 5.19 for assumption (5.10) matches the error seen in benchmark 3 in zero 

wind in Figure 5.11, but has some additional error on 𝑢 and 𝑣.  As explained earlier, the error on 𝑢 and 𝑣 

is due to the aircraft pointing into the wind and having a non-zero crab angle. 
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Interestingly, the error shown in Figure 5.19 for assumption (5.7) is larger at the beginning of the 

simulation than it was for both benchmarks 1 and 2 in Dryden wind.  Since the wind field is the same, 

this increase in acceleration must be due to autopilot maneuvers.   By close inspection of the 

assumption error for benchmark 3 zero wind Figure 5.11, it can be seen that there is also a substantial 

fluctuation in �̇�, �̇�, and �̇�.  This fluctuation is due to the autopilot initializing its PID controllers at the 

beginning of the simulation.  To support that notion, Figure 5.20 below contains the inertial velocity 

components and their rate of change for a simulation of commanded straight and level flight, and then a 

100 meter increase of commanded altitude at 6 seconds into the simulation. 

 

Figure 5.20: Method 1 Assumption Validity for Benchmark 3 in Dryden Wind and Delayed Climb 

The accelerations experienced here, though more noisy, are roughly the same magnitude as those seen 

in Figure 5.11 for benchmark 3 in zero wind.  Thus, the large accelerations seen in the original simulation 

are due to autopilot behavior at the beginning of the simulation. 
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It would make sense that the large fluctuations at the beginning simulation would cause the bank angle 

estimate of about 100 degrees, given the effect large errors in assumption (5.7) have been shown to 

have in the previous simulations.  However, it should be noted that like in benchmark 3 in zero wind, if 

the true values for assumption (5.10) are used, as is depicted in equation (5.57), the estimates for the 

pitch and bank angles becomes large, that the estimates settle in on ± 180 degrees. 

 

All this indicates is that like in benchmark 3 in zero wind, replacing the estimated inertial velocity 

components with their true ones cause the error in the attitude solution to become even larger.  This 

makes sense, as like in zero wind, with large errors on both sides of the simplified transport theorem 

equation (5.11), the estimated pitch angle will be smaller.  With the error on the right hand side gone, 
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the pitch angle estimate will be larger.  Unfortunately, in this case, EKF 1 isn’t able to correct for that 

large of an error. 

5.3 Method 1 Analysis Summary 

This section has demonstrated the performance differences of state estimation method 1 between 

simulations in zero wind and in Dryden wind.  It has shown that the performance of method 1 severely 

degrades in Dryden wind.  As examined in detail in this section, the overall reason this state estimation 

method performs so poorly in wind is the assumptions that were made in developing the state 

estimation algorithm.  A high level summary of the sources and their effects on the states necessary for 

autopilot control (4.11) is below in Table 5.11. 

Table 5.11: Method 1 State Estimation Error Summary 

Source of error Effects in Zero Wind Effects in Dryden Wind 

Gyro Bias Drift Drifts in estimates for 𝜙 and 𝑉𝑔 Drifts in estimates for 𝜙 and 𝑉𝑔 

Assumption (5.7): 

(�̇� = �̇� = �̇� = 0) 

Valid assumption in benchmarks 1 

and 2.  Pitch Errors in benchmark 

3. 

Increased standard deviation of attitude 

error in all benchmarks. 

Assumption (5.10): 

[
𝑢
𝑣
𝑤
] = 𝑉𝑎 [

cos 𝜃
0
sin𝜃

] 

Valid assumption in benchmarks 1 

and 2.  Mixed effect on pitch error 

in benchmark 3. 

No measured impacts in benchmarks 1 

and 2.  Mixed effect on pitch error in 

benchmark 3. 
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Pseudo-

measurements 

(5.27) and (5.28) 

EKF2 unable to account for yaw 

angle changes due to gyro rate 

bias.  Affected desired state 𝑉𝑔. 

EKF2 unable to account for yaw angle 

changes due to gyro rate bias.  Affected 

desired state 𝑉𝑔. 

Dryden Angular 

Rate Disturbances 

N/A No discernable effect on estimation of 

desired states. 

These conclusions are revisited after the sources of error for state estimation method 2 are discovered.  
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6 Method 2:  IMU and GPS Sensor Fusion 

6.1 Description 

In some ways, method 2 is conceptually simpler than method 1.  However, it involves full sensor fusion 

of the IMU and GPS sensor inputs to form a combined full inertial state estimate in one sensor 

integration process.  This process is demonstrated in [10], illustrated in [6] and [3], and derived in detail 

in [7] and [20].  However, an overview is given of it here.  The method produces no estimate for wind, 

but it uses a minimal set of sensors to obtain inertial information that is necessary for autopilot control 

and lays the groundwork for wind estimators to be built on top of this method’s state estimates, like is 

done in [10]. 

6.1.1 Direct IMU Numerical Integration 

Method 2 is accomplished by recognizing that an IMU and GPS can in effect provide redundant 

measurements of position and velocity.   The method works by first letting a strictly IMU based 

algorithm solve for the 9 states listed in (6.1). 

𝒙𝐼𝑀𝑈 = [𝑝𝑛 𝑝𝑒 𝑝𝑑  𝑢 𝑣 𝑤 𝜙 𝜃 𝜓 ]
𝑇 (6.1) 

Instead of the input-based EKF methodology used in method 1, method 2 solves for these states by 

using a priori knowledge of the states, which is the measurements of the states from the last estimator 

iteration.  At the first iteration of the estimator, the initial conditions are used as the a priori 

information.  With a priori knowledge, the accelerometer and gyro inputs can be directly numerically 

integrated to estimate the states 𝒙𝐼𝑀𝑈.  The subscript 𝐼𝑀𝑈 on the state vector in (6.1) indicates that 

these are the states that are being determined directly from integration on the IMU sensor 

measurements. 
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So, using only gyro measurements, the Euler angle rates are directly calculated as follows in equations 

(6.2) and (6.3).  

 [

�̂�𝑘
�̂�𝑘
�̂�𝑘

] = [

𝑦𝑝𝑔𝑦𝑟𝑜,𝑘 + 𝑏𝑔𝑝
𝑦𝑝𝑔𝑦𝑟𝑜,𝑘 + 𝑏𝑔𝑞
𝑦𝑝𝑔𝑦𝑟𝑜,𝑘 + 𝑏𝑔𝑟

] (6.2) 

 [

�̇�𝑘
̂

�̇�𝑘
̂

�̇�𝑘
̂

] = [

1 sin �̂�𝑘−1 tan 𝜃𝑘−1 cos �̂�𝑘−1 tan 𝜃𝑘−1
0 cos �̂�𝑘−1 −sin �̂�𝑘−1
0 sin �̂�𝑘−1 sec𝜃𝑘−1 cos �̂�𝑘−1 sec 𝜃𝑘−1

] [

�̂�𝑘
�̂�𝑘
�̂�𝑘

] (6.3) 

This relationship is the transport rate of 3-2-1 Euler angles as provided by equation (3.8).  The subscript 

𝑘 indicates that this is the value for the current estimator iteration, and the subscript 𝑘 − 1 indicates the 

a priori value from the last estimator iteration.  The values 𝑏𝑔𝑝 , 𝑏𝑔𝑞 , 𝑏𝑔𝑟  are the estimated biases of the 

gyros.  The biases are actually determined later in this process and explained there.  They are not 

obtained form an external calibration procedure.  A trapezoidal rule numerical integration is then 

performed on these calculated Euler rates to get an updated Euler angle estimate.   This integration is 

depicted in equation (6.4). 

 [

�̂�𝑘
𝜃𝑘
�̂�𝑘

] = [

�̂�𝑘−1
𝜃𝑘−1
�̂�𝑘−1

] + 𝑇𝑠 [

�̇�𝑘
̂

�̇�𝑘
̂

�̇�𝑘
̂

] (6.4) 

𝑇𝑠 is the time that has elapsed since the last IMU sample. It could be desirable to use a higher order 

integration method here, but that would involve performing higher order derivatives of equation (3.8).  

That would be a problem when second or higher order derivatives of the attitude a priori (𝑘 − 1) 

attitude data is needed, as it is not available.  Thus, a simple trapezoidal integration is performed, and as 

will be seen in the results, it is more than sufficient due to the high sampling frequency IMUs provide. 
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A similar method is performed to obtain the inertial velocities straight from the accelerometer 

measurements.  The full (not simplified) transport theorem relationship derived in equation (5.6) is 

rearranged to become the relationship that gets the inertial velocity derivatives from a priori inertial 

velocities and the just determined attitude and angular rates, as depicted by equation (6.5). 

 [

�̇�𝑘
�̇�𝑘
�̇�𝑘

] = [

𝑦𝑎𝑥,𝑘 + 𝑏𝑎𝑥
𝑦𝑎𝑦,𝑘 + 𝑏𝑎𝑦
𝑦𝑎𝑧,𝑘 + 𝑏𝑎𝑧

] − [

𝑞𝑘−1𝑤𝑘−1 − 𝑟𝑘−1𝑣𝑘−1 + 𝑔 sin𝜃𝑘
𝑟𝑘−1𝑢𝑘−1 − 𝑝𝑘−1𝑤𝑘−1 − 𝑔 cos 𝜃𝑘 sin𝜙𝑘
𝑝𝑘−1𝑣𝑘−1 − 𝑞𝑘−1𝑢𝑘−1 − 𝑔 cos 𝜃𝑘 cos𝜙𝑘

] (6.5) 

Equation (6.5) can be numerically integrated to obtain the inertial velocities [𝑉𝐵/𝑁]
𝐵

 as is done in (6.6). 

 [

𝑢𝑘
𝑣𝑘
𝑤𝑘
] = [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

] + 𝑇𝑠 [

�̇�𝑘
�̇�𝑘
�̇�𝑘

] (6.6) 

It will again be seen that first order numerical integration is sufficient.  In any case, derivatives of the 

angular rates are not available.  Last, the position of the aircraft relative to the inertial frame 𝒑𝐵/𝑁 is just 

the integrated velocity of the aircraft relative to the inertial frame 𝑽𝐵/𝑁.  Since  𝑽𝐵/𝑁 is currently written 

in body frame components 𝑢𝑘 , 𝑣𝑘 , 𝑤𝑘, the body frame components can just be rotated into the inertial 

frame prior to integration as in equation (6.7). 

 [

𝑝𝑛
𝑝𝑒
𝑝𝑑
] = [

𝑝𝑛𝑘−1
𝑝𝑒𝑘−1
𝑝𝑑𝑘−1

] + 𝑇𝑠𝑹𝑁𝐵 [

𝑢𝑘
𝑣𝑘
𝑤𝑘
] (6.7) 

 Now, this obtains an IMU-only estimate of the 9 inertial states listed in (6.1).  However, it is subject to 

integration errors and depends on known sensor biases.  It should also be noted that the gyro and 

accelerometer inputs are not passed through a low pass filter prior to integrating them.  This low pass 

filtering was only done in method 1 to help alleviate errors due to the assumptions made on the flight 

behavior of the aircraft.  No assumptions on the aircraft’s motion have been made here. 
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6.1.2 Sensor Fusion through Kalman Filtering 

Now that numerical integration has provided inertial position, inertial velocity, and attitude information, 

it can be recognized that GPS measurements provide duplicate measurements of some of the states.  

Nonetheless, a pure IMU solution can never be used indefinitely due to inevitable buildup of errors from 

numerical integration and sensor noise.  This is where sensor fusion comes in.  After the IMU based 

estimation is complete, measurements of error between the IMU and GPS solution are found, as defined 

in equation (6.8). 

 𝝐𝐼𝑀𝑈−𝐺𝑃𝑆,𝑘 = [
[𝒑𝐵/𝑁,𝑘]

𝐼𝑀𝑈
− [𝒑𝐵/𝑁,𝑘]

𝐺𝑃𝑆

[𝑽𝐵/𝑁,𝑘]
𝐼𝑀𝑈

− [𝑽𝐵/𝑁,𝑘]
𝐺𝑃𝑆

] (6.8) 

The IMU solution provides the inertial velocities in body 𝐵 frame components and positions in inertial 𝑁 

frame components.  The GPS receiver provided inertial velocities and positions both in inertial 𝑁 frame 

components.  For easier use later, this error needs to have both the inertial positions and velocities 

written in the 𝑁 frame.  This conversion is performed by equation (6.9), and makes use of the rotation 

matrix 𝑹𝑁𝐵, which is defined in equation (3.3).   

 

 𝝐𝐼𝑀𝑈−𝐺𝑃𝑆,𝑘
𝑁 = [

[𝒑𝐵/𝑁,𝑘]
𝑁

𝐼𝑀𝑈

𝑹𝑁𝐵(𝜓𝑘,𝐼𝑀𝑈) [𝑽𝐵/𝑁,𝑘]
𝐵

𝐼𝑀𝑈

] − [
[𝒑𝐵/𝑁,𝑘]
𝑁

𝐺𝑃𝑆

[𝑽𝐵/𝑁,𝑘]
𝑁

𝐺𝑃𝑆

]  (6.9) 

These simple GPS-IMU position and velocity errors are used as the measurements into an EKF that 

tracks the errors between the IMU solution and the perceived true solution.  This measurement vector 

for this EKF is depicted by (6.10). 
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 𝒚𝐸𝐾𝐹3 = 𝝐𝐼𝑀𝑈−𝐺𝑃𝑆
𝑁  (6.10) 

The subscript 𝐸𝐾𝐹3 is used to denote this EKF.  EKF 3 is the only EKF used in method 2, but labelling it 3 

clearly distinguishes it apart from EKF 1 and EKF 2 from method 1. In sensor fusion, this vector of exact 

differences between the IMU and GPS solutions in (6.10) is typically referred to as the innovation matrix. 

Next, the angular rates found from the IMU’s gyros are used as inputs to the EKF, as depicted by (6.11). 

 𝒖𝐸𝐾𝐹3 = [𝑝𝑘𝑞𝑘𝑟𝑘]
𝑇 (6.11) 

 Last, the EKF estimates all of the inertial states shown below in equation (6.12).  

 𝒙𝐸𝐾𝐹3 = [𝛿𝑝𝑛 𝛿𝑝𝑒  𝛿𝑝𝑑  𝛿𝑉𝑛 𝛿𝑉𝑒 𝛿𝑉𝑑 𝛿𝜙 𝛿𝜃 𝛿𝜓 𝑏𝑎𝑋𝑏𝑎𝑌𝑏𝑎𝑍𝑏𝑔𝑝𝑏𝑔𝑞𝑏𝑔𝑟]
𝑇

 (6.12) 

The 𝛿 modifier in the states of (6.12) indicates the estimated error of the specified state between the 

IMU solution for that state and the true value for that state.  For example, 𝛿𝑉𝑒  represents the estimate 

error between the strictly IMU based solution for inertial velocity written in the inertial frame and the 

true value for inertial velocity.  These error states are not the error between the GPS and IMU solutions, 

as that is the innovation matrix (6.10) that is used as the input to the EKF.  GPS also does not provide 

attitude estimates, so there is no such thing as an attitude difference between IMU and GPS solutions. 

The Kalman filter that creates this state vector processes the difference between GPS and IMU position 

and velocity measurements to also obtain the bias terms in state indices 10-15 of (6.12).  These bias 

terms hold total estimated error in the gyro and accelerometer readings.  These error terms can account 

for sensor imperfections other than just bias, to include time evolution of the bias based on a number of 

real sensor factors.  It can also account for bias due to integration error.   Most importantly however, 

these estimates of the sensor biases are fed back into the IMU solution to compensate for sensor errors.  

This is depicted in the flow diagram in Figure 6.1. 
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Even though this is an EKF, to some degree it acts as an Unscented Kalman Filter (UKF) in that it also 

keeps track of nonlinear error (or mean bias) of its states.  Reference [6] alludes to this method uses this 

augmented state vector because it is “perhaps the correct way” to account for the biases.  This could 

perhaps be implemented as a 9-state Unscented Kalman Filter, but comparing the performance of a UKF 

and an augmented EKF is outside the scope of this research.    

Now, this EKF updates the state vector only at each GPS measurement update.   This is done via the 

relationship in equation (3.12) using the equation (6.13). 

 𝑯(𝒙𝐸𝐾𝐹3, 𝒖𝐸𝐾𝐹3) = [𝑑𝑖𝑎𝑔(𝒙𝐸𝐾𝐹3) 𝟎6𝑥9] (6.13) 

The function 𝑑𝑖𝑎𝑔 builds a diagonal matrix with the components of 𝒙𝐸𝐾𝐹3 as its diagonal components.  

This relationship is in fact this simple because the first six states of 𝒙𝐸𝐾𝐹3 are treated to be the errors 

between the IMU solution and the GPS measurements.   Like just explicitly stated, the states are the 

errors between the IMU solution and the truth, so here, the GPS measurements are treated as truth.  

Sensor fusion accomplishes estimating the error states by treating one of the sensor sources as truth, 

and then uses a Kalman filter to minimize the variance of the error of the error between the non-truth 

source (IMU) and the true values (GPS).  The second six columns of the relation (6.13) are the null matrix 

(zero) because there is no truth (GPS) information for attitude and IMU sensor biases.   

Equation (6.13) causes the Jacobian used in the measurement update equations (3.15) and (3.16) to 

become equation (6.14). 

 
𝜕𝑯𝐸𝐾𝐹

𝜕𝒙𝐸𝐾𝐹
= [𝑰6𝑥6 𝟎6𝑥9] (6.14) 

Now, the measurement update relationship in equation (3.15) is used to generate the minimum 𝒙𝐸𝐾𝐹3 

error variance estimate 𝒙𝐸𝐾𝐹3,𝑘 and equation (3.16) is used to update the error covariance matrix. 
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However, this newly estimated  𝒙𝐸𝐾𝐹3,𝑘 is not the 𝒙𝐸𝐾𝐹3,𝑘−1 that is used in the next EKF 3 update.  This 

is because the outputs of the measurement update of EKF 3, 𝒙𝐸𝐾𝐹3,𝑘, are used to correct the IMU 

solution.  When an estimated minimum variance IMU  error state 𝒙𝐸𝐹𝐾3,𝑘 is generated, it is applied to 

the IMU estimate by equation (6.15). 

 [
𝛿𝑢
𝛿𝑣
𝛿𝑤
] = 𝑹𝐵𝑁 [

𝛿𝑉𝑁
𝛿𝑉𝐸
𝛿𝑉𝐷

] (6.15a) 

 �̂�𝑓𝑢𝑠𝑒𝑑 =

[
 
 
 
 
 
 
 
 
 
�̂�𝑛
�̂�𝑒
�̂�𝑑
�̂�
𝑣
�̂�
�̂�

𝜃
�̂� ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑝𝑛𝐼𝑀𝑈 − 𝛿𝑝𝑛
𝑝𝑒𝐼𝑀𝑈 − 𝛿𝑝𝑒
𝑝𝑑𝐼𝑀𝑈 − 𝛿𝑝𝑑
𝑢𝐼𝑀𝑈 − 𝛿𝑢
𝑣𝐼𝑀𝑈 − 𝛿𝑣
𝑤𝐼𝑀𝑈 − 𝛿𝑤

0
0
0 ]

 
 
 
 
 
 
 
 
 

+

[
 
 
 

𝟎6𝑥1

𝑑𝑐𝑚2𝑒𝑢𝑙𝑒𝑟 ([

1 −𝛿𝜓 𝛿𝜃
𝛿𝜓 1 −𝛿𝜙
−𝛿𝜃 𝛿𝜙 1

] × 𝑹𝑁𝐵(𝝍𝐼𝑀𝑈))

]
 
 
 

 (6.15b) 

Note that 𝑑𝑐𝑚2𝑒𝑢𝑒𝑙𝑒𝑟 mus be a quadrant safe function that backs the roll, pitch, and yaw angles out of 

the 𝑹𝑁𝐵 direction cosine matrix (DCM).  Also note that the skew symmetric method of applying the 

attitude errors to the DCM in equation (6.15) assumes that the angle errors are small.  Instead of 

multiplying the original IMU DCM 𝑹𝑁𝐵 matrix by a skew symmetric matrix of the angle errors (plus the 

identity matrix), a full DCM could be created using equation (3.3) in place of the skew symmetric matrix 

(plus the identity matrix).  Later, simulations show that the attitude angle errors can become large.  Thus 

future work could use this full method of accounting for the attitude error states. 

Now, this corrected IMU estimate �̂�𝑓𝑢𝑠𝑒𝑑 is both sent to the autopilot and fed back to the numerical 

integrators in section 6.1.1 as the a priori data.  This is illustrated in the flow chart in Figure 6.1.  Because 

the corrected state vector �̂�𝑓𝑢𝑠𝑒𝑑 is fed back to the IMU, the error state of EKF 3 𝒙𝐸𝐾𝐹3,𝑘 is no longer 

valid when the next EKF 3 time or measurement update is reached.  After the error state that the EKF 
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generated is applied to the IMU solution, the expected error in the IMU solution is by definition zero, as 

the error has been subtracted out by (6.13).  In mathematical terms, see equation (6.16). 

  �̂�𝑓𝑢𝑠𝑒𝑑|𝑘
= 𝒙𝐼𝑀𝑈,𝑘−1|𝑘+1  (6.16) 

Equation (6.16) means that the error corrected, fused IMU-GPS solution at the current measurement 

update 𝑘 is the data that is used for the a priori information 𝒙𝐼𝑀𝑈,𝑘−1 at the next sample of the IMU, 

which is indexed at the current update as 𝑘 + 1.  So, after each measurement update of EKF3, the errors 

in the IMU estimated states must be set to zero, as in equation (6.17).   

 𝒙𝐸𝐾𝐹3,𝑘+1 =

[
 
 
 
 
 
 
 
𝟎9𝑥1
𝑏𝑎𝑥
𝑏𝑎𝑦
𝑏𝑎𝑧
𝑏𝑔𝑥
𝑏𝑔𝑦
𝑏𝑔𝑧 ]
 
 
 
 
 
 
 

 (6.17) 

Note that this keeps in memory the currently estimated sensor biases.  Thus, in algorithm 

implementation, it is easier to simplify the measurement update equation to equation (6.18) and hold 

onto the memory of the estimated biases separately, as shown in Figure 6.1.  

 𝒙𝐸𝐾𝐹3,𝑘 = 𝑲𝒚𝐸𝐾𝐹3 (6.18) 

This simplification only works because the first 9 elements of the previous measurement update’s state 

vector is zero and the last 6 columns of the Jacobian (6.14) are zero.  Reference [X] shows this 

derivation.  The covariance matrix does not go to zero after a measurement update, and must continue 

to be updated at each measurement update via equation (6.18). 
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Now, although the error state is updated only at each GPS measurement update, the covariance matrix 

must be updated at each time update of the EKF.  Similar to method 1, a time update will be performed 

in EKF 3 each time the IMU is sampled.  This time update is performed by the state transition matrix 

formulation in equation (3.21).   Here, 𝚽EKF3 is the state transition matrix of the expected error 

between the IMU and GPS solutions from the previous IMU update to the current one, and 𝑸𝐸𝐾𝐹3 is the 

expected process noise from this discretized system.   

The state transition matrix 𝚽EKF3 is derived from two sources of expected error: the expected error 

induced on the states by errors in other states, and the error in the IMU solution due to the non-inertial 

N-E-D frame due to the rotation of the Earth.   These dependencies of some state errors on other state 

errors are expressed by formulating the Jacobian 𝑭 matrix that is defined in (3.11).  This Jacobian matrix 

is defined for this EKF in equation (6.19). 

 
𝜕𝑭𝐸𝐾𝐹3(𝒙𝐸𝐾𝐹3,𝒖𝐸𝐾𝐹3)

𝜕𝒙𝐸𝐾𝐹𝟑
=

[
 
 
 
 
 
 
 
 
03𝑥3 𝐼3𝑥3 03𝑥3 03𝑥3 03𝑥3
𝜕𝛿�̇�

𝜕𝛿𝒑
03𝑥3

𝜕𝛿�̇�

𝜕𝛿𝝍

𝜕𝛿�̇�

𝜕𝒃𝒂
03𝑥3

03𝑥3 03𝑥3
𝜕𝛿�̇�

𝜕𝛿𝝍
03𝑥3

𝜕𝛿�̇�

𝜕𝒃𝒈

03𝑥3 03𝑥3 03𝑥3
𝜕𝒃�̇�

𝜕𝒃𝒂
03𝑥3

03𝑥3 03𝑥3 03𝑥3 03𝑥3
𝜕𝒃�̇�

𝜕𝒃𝒈 ]
 
 
 
 
 
 
 
 

 (6.19) 

This matrix is used to derive the state transition matrix by solving the differential equation (3.18), which 

is depicted by equation (6.20).   

  𝚽EKF3 = 𝑒
𝑇𝑠𝑭𝐸𝐹3 (6.20) 

𝑇𝑠 in equation (6.20) is the time between samples of the IMU. 

Now, the derivatives in equation (6.19) indicate the expected change in the rates of the states of EKF 3 

per change in the values of the states of EKF 3.  In terms of the states of EKF3, the derivatives in (6.19) 
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relate the change in the error rate of a measurement per change in the error of another measurement.  

For example, 
𝜕𝛿�̇�

𝜕𝛿𝑽
 represents the change in the rate of IMU-GPS position vector error per change in IMU-

GPS error of the velocity vector.  In the matrix above, for short hand, 𝒑 is the position vector, 𝑽 is the 

velocity vector, 𝝍 is the vector of Euler angles, 𝒃𝒂 is the vector of accelerometer biases, and 𝒃𝒈 is the 

vector of gyro biases.  Last, recall that these derivatives are functions of the EKF 3 states 𝒙𝐸𝐾𝐹3 and 

inputs 𝒖𝐸𝐾𝐹3.  The definitions for these derivatives are below. 

 
𝜕𝛿�̇�

𝜕𝛿𝒑
= −𝑠𝑘𝑒𝑤(𝝎𝐸𝑎𝑟𝑡ℎ,𝑛𝑎𝑣) (6.21) 

 
𝜕𝛿�̇�

𝜕𝛿𝝍
= 𝑠𝑘𝑒𝑤 (𝑹𝑁𝐵(𝜙𝑘, 𝜃𝑘, 𝜓𝑘) [

𝑦𝑎𝑥,𝑘 + 𝑏𝑎𝑥
𝑦𝑎𝑦,𝑘 + 𝑏𝑎𝑦
𝑦𝑎𝑧,𝑘 + 𝑏𝑎𝑧

]) (6.22) 

 
𝜕𝛿�̇�

𝜕𝒃𝒂
= 𝑹𝑁𝐵(𝜙𝑘, 𝜃𝑘 , 𝜓𝑘) (6.23) 

 
𝜕𝛿�̇�

𝜕𝛿𝝍
= −𝑠𝑘𝑒𝑤(𝝎𝐸𝑎𝑟𝑡ℎ,𝑖𝑛𝑒𝑡𝑖𝑎𝑙 +𝝎𝐸𝑎𝑟𝑡ℎ,𝑛𝑎𝑣) (6.24) 

 
𝜕𝛿�̇�

𝜕𝒃𝒈
= −𝑹𝑁𝐵(𝜙𝑘, 𝜃𝑘 , 𝜓𝑘) (6.25) 

 
𝜕𝒃�̇�

𝑑𝒃𝒈
= 𝑰3𝑥3/τgyro (6.26) 

 𝝎𝐸𝑎𝑟𝑡ℎ,𝑖𝑛𝑒𝑡𝑖𝑎𝑙 = 7.292115 × 10
−5 𝑟𝑎𝑑

𝑠
[
cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)

0
−sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)

] (6.27) 

 𝝎𝐸𝑎𝑟𝑡ℎ,𝑛𝑎𝑣 = [

𝑣𝑘/(𝑟𝐸𝑎𝑟𝑡ℎ − 𝑝𝑑,𝐼𝑀𝑈,𝑘)

−𝑢𝑘/(𝑟𝐸𝑎𝑟𝑡ℎ − 𝑝𝑑,𝐼𝑀𝑈,𝑘)

−𝑣𝑘 tan(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) /(𝑟𝐸𝑎𝑟𝑡ℎ − 𝑝𝑑,𝐼𝑀𝑈,𝑘)

] (6.28) 
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For the purposes of simulation here, the latitude was assumed to always 40° North.  These derivatives 

are explained in detail in [6] and derived in [7] [20]. 

Last, the 𝑸 matrix is determinable from the expected IMU sensor noise as follows in equations (6.29) 

through (6.31). 

   𝑮 =

[
 
 
 
 
03𝑥3 03𝑥3 03𝑥3 03𝑥3
𝑹𝑁𝐵 03𝑥3 03𝑥3 03𝑥3
03𝑥3 −𝑹𝑁𝐵 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3 ]

 
 
 
 

  (6.29) 

𝑹𝒘 = 𝑑𝑖𝑎𝑔 ([𝜎𝑎,𝑤𝑥 𝜎𝑎,𝑤𝑦  𝜎𝑎,𝑤𝑧  𝜎𝑔,𝑤𝑥
 𝜎𝑔,𝑤𝑦

 𝜎𝑔,𝑤𝑧
 𝜎𝑎,𝑑𝑥  𝜎𝑎,𝑑𝑦  𝜎𝑎,𝑑𝑧  𝜎𝑔,𝑑𝑥

 𝜎𝑔,𝑑𝑦
 𝜎𝑔,𝑑𝑧]

𝑇
) (6.30) 

 𝑸 = (𝐼15𝑥15 + 𝑇𝑠𝑭)(𝑇𝑠𝑮𝑹𝒘𝑮
𝑻) (6.31) 

The standard deviation of accelerometer and gyro sensors, given above as 𝜎𝑎 and 𝜎𝑔 respectively, are 

typically modelled as a Gauss-Markov process with properties of noise correlated to time and noise 

uncorrelated to time, 𝜎(𝑠𝑒𝑛𝑠𝑜𝑟),𝑑 and 𝜎(𝑠𝑒𝑛𝑠𝑜𝑟),𝑤 respectively.  Again, these equations are explained in 

detail in [6] and derived in [7] [20]. 

Now, it should be noted that while this method does provide a way to map the effects of some states’ 

errors on other states’ errors, in practice, the performance of this filter is strongly impacted by the initial 

covariance matrix 𝑷𝟎.  In fact, during simulation of this estimator, it was observed that if the initial 

covariance of the yaw angle error was set too high, the estimator would favor excess yaw rate bias in 

place of using the correct IMU supplied yaw angle.  This resulted in the yaw estimate being terribly off, 

and thus causing the inertial velocities 𝑢 and 𝑣 to take the place of each other, depending on the current 

yaw angle.  However, with a manually adjusted initial covariance, stable estimation was achieved.  A 
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future study could look to augment this filter with an inertial attitude sensor (such as EMI-prone 

magnetometers) to provide a more stable bias estimation.   

Last, once the IMU-GPS fused estimative 𝒙𝑓𝑢𝑠𝑒𝑑,𝑘 is obtained, the course angle 𝜒 is found from the 

inertial velocity through the relationships (4.13).   Further, the ground speed 𝑉𝑔 is found by first 

determining the inertial frame components of the inertial velocity through equation (6.32), and then 

determining the magnitude of the earth-level north and east components via equation (6.33). 

 [𝑉𝑁 𝑉𝐸 𝑉𝐷]
𝑇 = 𝑅𝑁𝐵(�̂�𝑘, 𝜃𝑘 , 𝜃𝑘)[�̂�𝑘 𝑣𝑘 �̂�𝑘]

𝑇 (6.32) 

 𝑉𝑔 = √𝑉𝑁
2 + 𝑉𝐸

2 (6.33) 

6.1.3 Method 2 Summary 

In summary, this method performs numerical integrations on unfiltered IMU gyro and accelerometer 

inputs to obtain a strictly IMU based solution for the states 𝒙𝐼𝑀𝑈.  The IMU solution is then passed 

through an EKF that determines the minimum variance estimate of the error of the difference between 

the GPS and IMU solutions for their shared inertial velocity and inertial position states.  This process also 

estimates the error in attitude of the IMU solution as well as dynamically estimates the total gyro and 

accelerometer biases.  The estimated error of the IMU solution is used to correct the IMU solution and 

the estimated biases are fed back to the IMU estimator.  A flow chart that summarizes the equations 

discussed in this section is in Figure 6.1. 
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Figure 6.1: Method 2 Flow Chart 

Last, it should be noticed that this estimator does not provide an estimate for airspeed.  Only inertial 

velocity information is obtained, which provides no insight into the airspeed.  So, airspeed is separately 

obtained through a low pass filter on a pitot – static tube airspeed sensor, as depicted in Figure 6.2. 

 

Figure 6.2: Airspeed Estimation for Method 2 

 

6.2 Detailed Simulation Results 

This section contains simulation results for the performance of state estimation method 2 under varying 

levels of wind and the benchmark maneuvers presented in section 4.3.  Like the results presented for 
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state estimation method 1 in section 5.2, the autopilot was fed the true states throughout these 

simulations to keep the aircraft from diverging form the benchmark path during simulations and thus 

enable direct analysis of the state estimation method during different flight conditions. 

6.2.1 IMU Only Solution (No GPS/EKF3 Corrections) 

Because state estimation method 2 is built around the notion of propagating the IMU solution for the 

aircraft’s position and attitude over time, and then correcting the IMU errors with GPS data, it is 

important to first characterize the errors in the states obtained without any corrections to the IMU 

solutions. With a baseline of the IMU estimator’s performance, the effectiveness of EKF3 can be 

properly analyzed. 

6.2.1.1 Benchmark 1 without Bias Drift 

To thoroughly analyze the performance of the IMU solution, the performance of the IMU will first be 

assessed without any gyro rate bias drift.   Simulation of such a scenario enables analysis of the behavior 

of individual state estimates. Figure 6.3 below contains the results of this simulation. 
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Figure 6.3: State Estimation Results of Method 2 without EFK3 in Benchmark 1 in Zero Wind 

Table 6.1: Error Statistics of Method 2 without EKF3 in Benchmark 1 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  42.72204 45.02032 42.72204 45.02032 0.003516 160.7358 

𝑉𝑎  (𝑚/𝑠)  -1.9E-05 0.008112 0.005828 0.005643 0.000002 0.120962 

𝜙 (𝑑𝑒𝑔)  1.593074 1.670424 2.021349 1.114529 0.000277 4.780944 

𝜃 (𝑑𝑒𝑔)  -4.75249 2.927823 4.774749 2.891371 0.000342 9.408488 

𝑝 (𝑑𝑒𝑔/𝑠)  -0.04432 1.752646 1.38712 1.072108 0.006639 5.641793 

𝑞 (𝑑𝑒𝑔/𝑠)  -0.068 1.776449 1.401344 1.093806 0.001934 6.239603 

𝑉𝑔  (𝑚/𝑠)  -11.8473 15.97751 13.04485 15.01559 0.000121 47.42488 
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These results show that variations of the error in the angular rates, side specific force 𝑦𝑎𝑦, and airspeed 

are nearly identical to the variations in their errors in all of the simulations in method 1.  The standard 

deviations of the side specific force in Table 6.1 above and in Table 5.2 for method 1 in benchmark 1 and 

zero wind are both 0.096 𝑚/𝑠2.  The standard deviations of the airspeed force in Table 6.1 above and in 

Table 5.2 for method 1 in benchmark 1 and zero wind are both 0.0072 𝑚/𝑠.  This makes sense, as the 

same exact set of low pass filter was used for 𝑦𝑎𝑦 and 𝑉𝑎 in method 2 as in method 1.  On the other 

hand, the standard deviations of the roll and pitch rates in Table 6.1 for method 2 above are slightly 

higher than in Table 5.2 for method 1.  This is because although the same sensors are used here, the 

angular rates are no longer passed through a low pass filter.  Nonetheless, their values are close, as is 

indicative of the same sensor model and the high cutoff frequency that is used for the low pass filter for 

method 1, as is discussed in section 5.2.2.2. 

Now, the errors in the remaining states (ℎ, 𝜙, 𝜃, 𝑉𝑔) do not closely match the errors in any of the method 

1 simulations.  The estimates for the bank and pitch angles exhibit a random walk, and the error of the 

estimates for the altitude and ground speed steadily grow.   This behavior is typical of IMU-only 

solutions.   Method 2 directly integrates two sources of Gaussian distributed sensor noise to obtain 

these four states – the gyros and accelerometers.  The angular rate sensor inputs are integrated once in 

equation (6.4) to obtain the aircraft attitude, and the accelerometer inputs are integrated twice, once in 

equation (6.6) and again in equation (6.7) to obtain the inertial position.  The single integration on the 

angular rates produces the random walk of the bank and pitch estimates seen in Figure 6.3.  This 

random walk of angle error is often termed angle random walk, and is often specified as a noise bound 

on gyro manufacturers’ data sheets [21]. While the random walk on attitude is direct result of 

integrating the rate gyros, the transport theorem based equation (6.6) shows that the estimates for the 

body-frame inertial velocity components 𝑢, 𝑣, 𝑤 are integrations of a combination of the accelerometers 
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and the already integrated attitude solution.  The attitude is used by equation (5.5) to determine the 

body-frame components of the gravity vector.   

Figure 6.4 below shows these inertial velocity components that are also estimated as part of method 2.  

The figure also shows the estimate for the yaw angle 𝜓, which like the bank and pitch angles also 

exhibits a random walk, but is not shown in the above results. 

 

Figure 6.4: Extra State Estimation Results of Method 2 without EFK3 in Benchmark 1 in Zero Wind 

This shows that without EKF3, the error of the estimates for the body-frame inertial velocity 

components 𝑢, 𝑣, 𝑤 become very large.  Because the desired states ℎ and 𝑉𝑔 are direct computations 

from these values, per equation (6.7) and equation (XX) respectively,  it makes sense how much error is 

seen in these states without EKF3, as depicted in Figure 6.3.  However, it isn’t immediately clear from 

Figure 6.4 how much of the error in the inertial velocity components is due to the aggregate effect of 

bad attitude estimates on the accelerations of equation (6.5), and how much is due to random walk 

from integration of accelerometer measurements that also have a Gaussian noise distribution.  To 

analyze that, below is the results of a simulation where the true attitude angles were used in method 2 

instead of the attitude that is obtained from integrating the rate gyros. 
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Figure 6.5: State Estimation Results of Method 2 Benchmark 1 without EFK3 and with True Attitude Knowledge 
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Figure 6.6: Extra State Estimation Results of Method 2 Benchmark 1 without EFK3 and with True Attitude Knowledge 

  

These results show that with zero attitude estimate error, the error in all of the inertial velocity 

components become small random walks instead of quickly diverging from the true values.  

Consequently, the estimate for the ground speed 𝑉𝑔 also now has a small random walk.  This makes 

sense because 𝑉𝑔 is a direct function of these components and the now zero error attitude solution. 

However, the estimate for the altitude ℎ still quickly diverges from the true altitude. This makes sense 

because the inertial position is still an integration of this random walk.   

In summary, without GPS corrections, random walk of the attitude estimates cause a quickly diverging 

estimate for the ground speed, but do not have much bearing on the behavior of the altitude estimate.  

The double integration of the accelerometers causes a random walk in the body-frame inertial velocity 

components, which in turn causes a random walk in the ground speed 𝑉𝑔 estimate, and through a 
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second integration, a quickly diverging value in the altitude estimate.  This shows that the ability of GPS 

corrections through EKF3 to correct the estimates for altitude ℎ and ground speed 𝑉𝑔 is paramount for 

successful estimation of those states.  This also shows that it must also be the responsibility of EKF3 to 

keep the random walk of the attitude solution bounded over time, while the estimates for 𝑝, 𝑞, 𝑦𝑎𝑦 , and 

𝑉𝑎are not affected by the integration error of the strictly IMU based solution.  

6.2.1.2 Benchmark 1 

Now that the performance of the raw IMU solution has been analyzed, the added effects of introducing 

a rate gyro bias drift to the IMU solution can be characterized.  The gyro rate bias drift that is introduced 

here is identical to the bias drift that is used in the simulations for method 1, which is  
1

30

𝑑𝑒𝑔

𝑠2
 on each 

gyro axis.  Figure 6.7 below contains the results of such a simulation. 

 

Figure 6.7: State Estimation Results for Method 2 without EKF3 under Benchmark 1 in Zero Wind 
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Figure 6.8: Extra State Estimation Results for Method 2 without EKF3 under Benchmark 1 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  1763.6 2726.97 1763.6 2726.97 0.003516 10580.86 

𝑉𝑎  (𝑚/𝑠)  0.000119 0.008135 0.005861 0.005642 0 0.119165 

𝜙 (𝑑𝑒𝑔)  -58.7161 54.72433 58.90604 54.51982 0.000141 206.3099 

𝜃 (𝑑𝑒𝑔)  -0.19626 25.9485 19.23697 17.4144 0.003929 75.1807 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.5439 2.013943 2.045339 1.50199 0.001062 7.887263 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56757 1.948588 2.060914 1.416582 0.007491 7.347993 

𝑉𝑔  (𝑚/𝑠)  -142.625 149.3058 145.5383 146.4675 0.000121 399.9502 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00376 0.09608 0.07568 0.059307 0.000003 0.34756 

These results illustrate that when gyro rate bias drifts are added to the strictly IMU based solution, the 

estimates for the attitude angles become unboundedly large.  This is a direct result of the gyro rate bias 

drift, as equation (6.3), which is based on the angular rate inputs, is the sole source of attitude 

information.  Now, it should be recalled from the previous section that with accurate attitude estimates, 

the estimate for the ground speed 𝑉𝑔 only exhibits a small random walk due accelerometer noise, and 

although the estimate for the altitude ℎ quickly becomes very large, it only reaches an error of about 

150 meters over the course of the 90 second simulation.   In these results for the IMU solution with a 

non-zero gyro bias drift, the magnitude of the error in altitude is much larger, and the ground speed 

estimate no longer exhibits a small random walk.   Figure 6.7 also shows that all of the angular velocity 
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components exhibit very large errors.  Thus, these increases in error are strictly due to the substantially 

increased error in the attitude estimates. 

This simulation shows that if the gyro bias drifts are not accounted for, in addition to incurring 

substantial attitude estimate error, the IMU solutions for the ground speed 𝑉𝑔and altitude ℎ will also be 

significantly adversely affected. 

6.2.2 Zero Winds 

Now that the performance of IMU only portion of method 2 has been assessed, the IMU estimate 

corrections that are supplied by EKF3 with GPS inputs can be added. 

6.2.2.1 Benchmark 1 without Gyro Bias Drift 

The first simulation that is performed with the entirety of method 2, including EKF3, is the straight and 

level flight scenario with zero gyro bias drift.   
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Figure 6.9: Method 2 State Estimation for Benchmark 1 in Zero Wind and Zero Gyro Bias Drift 

Table 6.2: State Error Statistics for Benchmark 1 in Zero Wind and Zero Gyro Bias Drift 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -0.19165 0.948101 0.73011 0.634436 0.000375 3.211446 

𝑉𝑎  (𝑚/𝑠)  -9.7E-05 0.00818 0.005913 0.005653 0.000001 0.121002 

𝜙 (𝑑𝑒𝑔)  -0.32496 1.338593 1.171662 0.724223 0.000019 3.147065 

𝜃 (𝑑𝑒𝑔)  -0.58559 1.065025 1.043912 0.62238 0.000005 2.947473 

𝑝 (𝑑𝑒𝑔/𝑠)  -0.06213 1.752315 1.386524 1.073222 0.000395 5.683305 

𝑞 (𝑑𝑒𝑔/𝑠)  -0.02871 1.777905 1.401115 1.094728 0.002865 6.225272 

𝑉𝑔  (𝑚/𝑠)  0.042695 0.128317 0.105566 0.084515 0.000003 0.481267 

       

 

These results can be directly compared to the results obtained in section 6.2.1.1, which was performed 

under the same conditions but without EKF3.  This comparison yields a good measure of the 

performance of EKF3.  The first thing that should be noticed about the results in Figure 6.9 is that 
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estimates for altitude ℎ and ground speed 𝑉𝑔 no longer diverge away from the true values like they do in 

Figure 6.3.  Errors in the estimates for the components of the ground speed are still present, as 

indicated by Figure 6.10, but EKF3 corrects those errors to the GPS provided measurements, which don’t 

accumulate as much error, as is indicated in Figure 6.9. 

 

Figure 6.10: Extra Estimated States from Method 2 for Benchmark 1 with Zero Wind and Zero Gyro Rate Bias 

While Figure 6.10 shows that the estimates for the body frame inertial velocity component 𝑢, 𝑣, 𝑤 still 

have error, the estimate for the component 𝑢 is significantly less than without EKF3 as in Figure 6.4.  

This makes sense because assuming the attitude error is small, EKF3 is able to directly map the GPS 

inertial frame velocity vector measurement to the body frame velocity vector through equation (6.9) 

and thus get accurate measurements for 𝑢, 𝑣, and 𝑤.  However, as will be seen more later in this 

document, large attitude estimate errors can drastically degrade the estimates for 𝑢, 𝑣, and w.  The 

cause of this degradation of the velocity estimates, which is even seen here with small attitude error, is 
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the fact that attitude knowledge is required to map the GPS inertial frame velocity vector to the body 

frame, again in equation (6.9).  When the attitude estimates are not accurate, equation (6.9) provides an 

inaccurate velocity error measurement 𝜹𝑽, even if the current IMU provided velocity estimate is in fact 

close to truth.   

In this simulation, the pitch and bank angles become up to about 2 degrees off, and the yaw angle 

becomes up to about 6 degrees off.    While these errors in attitude are small, they do still affect the 

estimates for 𝑢, 𝑣, and 𝑤.  For example, the 6 degree error can be visually correlated to the error in 𝑣, 

which is nominally zero in zero wind.  Both errors peak at about 40 seconds into the simulation, and go 

to zero again around 80 seconds into the simulation.  It makes sense that the error in 𝜓 directly shows in 

the estimate for 𝑣, as in straight and level flight can, the estimated horizontal velocity 𝑣 that results 

from mapping the GPS inertial velocity vector into body coordinates is proportional to sin(𝜓).  For small 

angles, sin(𝜓) is often approximated by 𝜓, meaning that 𝑣 is directly proportional to 𝜓. Oppositely, the 

inertial velocity component 𝑢 in straight and level flight is proportional to cos(𝜓), which for small angles 

is often approximated as 1 and means that 𝑢 does not change with changes in 𝜓.  Thus, for any small 

error in 𝜓 in straight and level flight, 𝑣 will be much more affected than 𝑢.  Similarly, in level flight where 

the pitch angle is nominally zero, the vertical velocity 𝑤 is proportional to sin(𝜃). For small angles of 𝜃, 

this is approximated as 𝜃, meaning that 𝑤 is directly proportional to 𝜃.  Again, oppositely, 𝑢 being 

proportional to cos𝜃 in level flight means that u is essentially independent of 𝜃.  In conclusion, errors in 

the attitude in straight and level flight will affect the mapping of the GPS inertial velocity vector into the 

body frame by larger errors in 𝑣 and 𝑤 than u.  This is why in Figure 6.10 the estimate for 𝑢 is seen to be 

corrected at every GPS measurement interval of 1 second to essentially the true value, while the 

estimates 𝑣 and 𝑤 are corrected to a value that has a small error.  The measurement model of (6.9) 

induces errors in 𝑣 and w when attitude errors are present, but not in 𝑢, and thus is able to correct any 

IMU error in 𝑢. 
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Now, it can also be noted from Figure 6.9 that the estimates for the pitch and bank angles still visually 

appear to randomly walk.  While this appears to be hardly different from the attitude estimates without 

EKF3 in Figure 6.3, it should be noticed that the standard deviation and mean of the attitude errors are 

in fact less with EKF3.   This brings up an important recurring notion about attitude error observability 

that will be highlighted in each of the following simulations.  This notion is as follows. 

The measurement model of method 2 only relates the differences between the GPS and IMU position 

and velocity to the position error states and velocity error states, respectively.  The measurement model 

does not relate the measured IMU-GPS differences to the attitude error states, accelerometer bias 

states, or gyro bias states.  The only way these three sets of states are modified in EKF3 is via the use of 

the covariance matrix 𝑃𝐸𝐾𝐹3 in the Kalman gain 𝐾𝐸𝐾𝐹3.  Thus, the GPS-IMU difference measurements 

only affect the attitude error, accelerometer bias, and gyro bias states through the system model as is 

described in equation (6.19) through equation (6.31) and is propagated into the covariance matrix by 

equation (3.21).  In the system model, the only equation relating the attitude error to the directly 

measured position and velocity errors is equation (6.22).  The attitude error is also related to the gyro 

bias via equation (6.25), but that will be discussed in the next section.  Equation (6.22) is derived from an 

analysis of the difference between the IMU and GPS solutions for the time rate of change of velocity, 

and is derived in detail in [7] and highlighted in [6].  The most important aspect of this sole relationship 

between attitude error and measured velocity and position error is that it does not make assumptions 

about the typical wind frame aligned motion of an aircraft.  The only assumptions are that the system is 

an object with body frame attached accelerometers.  That means that, for example in the case of zero 

wind and level flight, the aircraft could have a large body frame axis horizontal velocity 𝑣 and zero 

longitudinal velocity 𝑢, which indicates a 90 degree sideslip, and that would have no bearing on this 

relationship.  Instead of relating attitude error to typical motions of aircraft, this relationship (6.22) 

compares measured accelerations along body frame axes to the time rate of change of velocity error. 
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This concept is most easily illustrated in a 2D scenario, as depicted in the aircraft’s horizontal plane in 

the figure below. 

 

Figure 6.11:  Dependence of Difference between Accelerometer Measurement and Velocity Errror Growth on Yaw Growth 

This illustrates that difference between the vector of increasing velocity error can be related to the 

measured acceleration through the error in the yaw angle.  In this case, if the velocity error is growing in 

the X-Y plane, it can be concluded that there is an error in the estimated yaw angle if the error in the 

velocity is growing in a different direction than the acceleration vector.  In other words, if the 

measurement model of (6.9) provides a non-zero velocity error, it can be assumed that there is some 

error in the yaw angle if the aircraft has only accelerated in another direction.   

Expanding this notion to all three axes for the straight and level scenario can be performed 

mathematically by solving equation (6.22) around the straight and level flight assumptions of 𝜃 = 0 and 

𝜙 = 0.  Making these substitutions into (6.22) results in the following system of equations that relate 

time rate of change of the components of the velocity error state 𝜹𝑽  to the measured accelerations, 

current attitude, and the attitude error state 𝜹𝝍. 
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𝜕𝛿�̇�

𝜕𝛿𝜃
= −

𝜕𝛿�̇�

𝜕𝛿𝜙
= −(𝑦𝑎𝑧 + 𝑏𝑎𝑧) (6.34) 

 
𝜕𝛿�̇�

𝜕𝛿𝜓
= −

𝜕𝛿�̇�

𝜕𝛿𝜙
= (𝑦𝑎𝑥 + 𝑏𝑎𝑥) sin𝜓 − (𝑦𝑎𝑦 + 𝑏𝑎𝑦) cos𝜓 (6.35) 

 
𝜕𝛿�̇�

𝜕𝛿𝜓
= −

𝜕𝛿�̇�

𝜕𝛿𝜃
= (𝑦𝑎𝑦 + 𝑏𝑎𝑦) 𝑠𝑖𝑛𝜓 − (𝑦𝑎𝑥 + 𝑏𝑎𝑥) 𝑐𝑜𝑠 𝜓 (6.36) 

An important notion can be drawn from these simplified relationships.  When these equations are 

inverted, which is done numerically by the Kalman filter, it can be seen that every component of the 

attitude error state 𝜹𝝍 is not always affected by every axis’ accelerometer input.  The dependence of 

the attitude error states can be determined by inspection of the above equations and can be 

summarized by the below table. 

Table 6.3: Dependence of Attitude Error Observability on Accelerations for Benchmark 1 

State that is Observed Observability Enabled by Acceleration along Axes 

𝛿𝜙 X,Y,Z 

𝛿𝜃 X,Y,Z 

𝛿𝜓 X,Y 

This table describes the skew symmetric relationship in equation (6.22) of the measured acceleration to 

the expected change in velocity error due to attitude error.  This notion is a qualitative description of the 

dependence of attitude error observability on the maneuvers of the aircraft.  However, it is extremely 

important to note that accelerations along these axes do not guarantee observability of the 

corresponding attitude angle; these accelerations simply enable these attitude errors to be observed.  In 

other words, it is impossible for an attitude angle error to be observable if there is no acceleration in any 

of the corresponding axes listed in the above table. 

True observability of the above attitude angles involves a much more in-depth analysis, and such an 

analysis is performed in great mathematical detail in [22] from both a time-invariant approach and a 
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time-varying approach that uses a concept of instantaneous observability.   The research presented in 

[22] concludes that introducing time varying accelerations improves the observability of the attitude 

angles, but the yaw angle 𝜓 remains less observable than the others.  A similar conclusion can be drawn 

here by realizing that under normal circumstances of aircraft flight, it is desired to minimize the X and Y 

axes accelerations, while the Z-axis specific force is always present due to gravity.  Mapping this 

knowledge of accelerations to the table above produces the conclusion the roll and pitch attitude angle 

errors will always be much more observable than the yaw angle error.  In order to measure yaw error, 

accelerations in the X or Y axes are need, and are not typically present.  On the other hand, accelerations 

in the Z axis (gravity) enable measuring of the roll and pitch errors. 

Last, it is important to note that the accelerations used here are the accelerometer inputs after applying 

the estimated accelerometer biases.  Large errors in accelerometer bias estimates do not occur in these 

simulations due to the lack of accelerometer bias drift.  Analyzing the effects of accelerometer bias 

errors could be a topic of future study. 

In conclusion, the attitude angles still randomly walk because EKF3 does not correct for them directly, 

and instead relies on differences between velocity error growth and measured accelerations to correlate 

measured velocity error to attitude error through the covariance matrix.  Further, the reason the pitch 

and bank angle estimates have less error with EKF3, whereas the error in estimated yaw is about the 

same with and without EKF3, is that yaw and bank angles are somewhat observable due to a constant 

acceleration due to gravity and yaw is not observable unless accelerations in the X-Y plane are provided. 
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6.2.2.2 Benchmark 1 

Now that the performance of EKF3 has been analyzed without the presence of gyro bias drift, the same 

gyro bias drift of 
1

30

𝑑𝑒𝑔

𝑠2
 on each axis can be added to the simulation.  The below results are for a 

simulation of straight and level flight in zero wind, but now including these gyro bias drifts. 

 

Figure 6.12: Method 2 State Estimates for Benchmark 1 in Zero Wind 

Table 6.4: State Estimation Error Statistics for Method 2 Benchmark 1 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -1.31604 0.903431 1.374919 0.811 0.000674 2.885288 

𝑉𝑎  (𝑚/𝑠)  -3.6E-05 0.007888 0.005789 0.005357 0 0.119036 

𝜙 (𝑑𝑒𝑔)  -9.07726 5.689311 9.229268 5.439224 0.001429 18.08639 

𝜃 (𝑑𝑒𝑔)  -3.75936 3.214824 4.210033 2.596742 0.002526 8.772794 

𝑝 (𝑑𝑒𝑔/𝑠)  -0.97087 1.821175 1.630213 1.265496 0.003296 6.753102 

𝑞 (𝑑𝑒𝑔/𝑠)  -0.85567 1.794001 1.602877 1.17524 0.000111 7.016067 

𝑉𝑔  (𝑚/𝑠)  0.576728 0.713256 0.690267 0.60404 0.000011 2.70545 
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At first glance, it is immediately apparent that EKF3 does not eliminate all of the effects of a gyro bias 

drift.   While the estimates for pitch 𝜃 and roll 𝜙 do not grow to the extent they do without EKF3 as 

shown in section 6.2.1.2, they still contain significantly more error than without bias drift as shown in 

section 6.2.2.1.  Below are the results for the remaining estimates of the IMU states. 

 

Figure 6.13: Extra State Estimates for Benchmark 1 in Zero Wind 

First, it should be noted that just as in the results without gyro rate bias in Figure 6.9, the estimate for 𝑉𝑔 

is essentially being 100% corrected at each GPS measurement update.  This is because the components 

of Kalman gain for the velocity errors is always near 1, which is due to the fact that the expected 

measurement noise on GPS measurements is very low.  The estimate for  𝑉𝑔 is determined by rotating 

the body frame velocity vector into the inertial frame, as in equation (6.22), and then by taking the 
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magnitude of the first two components, as in equation (6.33).  The net result of this computation and 

the Kalman gain being near 1 is that at each GPS measurement update, the GPS measurements are 

mapped into the body frame and then directly back to the inertial frame to compute the ground speed.  

This essentially error-free mapping and immediate inverse mapping causes the ground speed estimate 

to be corrected to the ground speed directly computed from the GPS provided north and east velocities. 

Next, as discussed in the previous section, in straight and level flight and zero wind there is zero 

measured acceleration in the horizontal plane and measured acceleration due to gravity in the vertical 

X-Z and Y-Z planes.   Thus, it can be expected that roll and pitch angle errors are corrected much more 

than yaw angle errors.   The results here reflect this.  The roll and pitch angles stay close to their true 

values, while the yaw estimate steadily increases in error with time.   

Nonetheless, it should be recalled that EKF3 also estimates the gyro sensor bias and accelerometer 

sensor bias.  The estimate for the gyro sensor bias comes from the relationship (6.25) between the time 

rate of change of the attitude error estimates 𝛿𝝍 and the gyro biases 𝒃𝑔.   The two quantities are 

directly related through the body-to-inertial transformation matrix 𝑹𝑁𝐵.  In straight in level flight, the 

transformation matrix is well characterized by single rotation about the Z axis of an amount equal to the 

yaw angle.  This means that the roll and pitch gyro bias states are linear combinations of the time rate of 

change of the roll and pitch attitude error states, and the yaw bias state is directly mapped to the time 

rate of change of the yaw error state.  This relationship is summarized by simplifying equation (6.25) 

with the assumption that in straight and level flight, 𝜙 = 𝜃 = 0. 

[
 
 
 
 
 
 
 
𝜕𝛿�̇�

𝜕𝑏𝑔𝑥

𝜕𝛿�̇�

𝜕𝑏𝑦

𝜕𝛿�̇�

𝜕𝑏𝑧

𝜕𝛿�̇�

𝜕𝑏𝑔𝑥

𝜕𝛿�̇�

𝜕𝑏𝑔𝑦

𝜕𝛿�̇�

𝜕𝑏𝑔𝑧

𝜕𝛿�̇�

𝜕𝑏𝑔𝑥

𝜕𝛿�̇�

𝜕𝑏𝑔𝑦

𝜕𝛿�̇�

𝜕𝑏𝑔𝑧]
 
 
 
 
 
 
 

= − [
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1
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Since it was shown in the previous section that in straight and level flight, roll and pitch attitude errors 

are observable and yaw errors are not, it is logical to conclude that because of this relationship, in 

straight and level flight, the roll error and pitch gyro biases are able to be observed, and the yaw bias is 

not.  This notion is supported by the gyro bias states that are estimated in this simulation, which are 

shown below. 

 

Figure 6.14: Bias Estimates for Method 2 in Benchmark 1 in Zero Wind 

These results show that as expected, the estimated roll and pitch gyro bias tracks their true values much 

closer than the estimate for the yaw bias does.  A lag still exists in the bias estimates for the other 

angles, but that is also to be expected as the system model indicates a zero time rate of change of both 

the accelerometer and gyro biases.  Again, the only relationship affecting the estimate of the gyro bias is 

(6.25), relating attitude error to the gyro bias.   



www.manaraa.com

130 

Last, the estimates for the body-frame components of the inertial velocity can be seen to correlate to 

the errors in attitude.  The sign and relative magnitude of the yaw error can be seen in the varying 

estimates for 𝑢 and 𝑣, and the variation of the pitch estimate can be seen in the varying estimate for the 

vertical velocity 𝑤.  As explained previously, this is due to the relationship (6.9) which requires attitude 

information to map the inertial frame GPS measurements into the body frame. 

The derivation of the propagation of the attitude error, as is performed in [7], omits a term relating the 

time rate of change of attitude error to the estimated angular velocity of the aircraft.   This term is 

omitted simply because it is not part of the EKF 3’s states.  Inclusion of such a term could perhaps 

improve IMU-GPS attitude error tracking, but would require estimating the angular velocity as part of 

the Kalman filter. 

6.2.2.3 Benchmark 2 

Now that the effects of adding gyro bias drift on the state estimates have been analyzed, a simulation of 

a coordinated turn in zero wind can be performed and analyzed.  Below are the method 2 state 

estimation results for such a simulation. 
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Figure 6.15: State Estimation Results for Benchmark 2 in Zero Wind 

 

Table 6.5: State Estimation Error Statistics for Benchmark 2 in Zero Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -1.31604 0.903431 1.374919 0.811 0.000674 2.885288 

𝑉𝑎  (𝑚/𝑠)  -3.6E-05 0.007888 0.005789 0.005357 0 0.119036 

𝜙 (𝑑𝑒𝑔)  -9.07726 5.689311 9.229268 5.439224 0.001429 18.08639 

𝜃 (𝑑𝑒𝑔)  -3.75936 3.214824 4.210033 2.596742 0.002526 8.772794 

𝑝 (𝑑𝑒𝑔/𝑠)  -0.97087 1.821175 1.630213 1.265496 0.003296 6.753102 

𝑞 (𝑑𝑒𝑔/𝑠)  -0.85567 1.794001 1.602877 1.17524 0.000111 7.016067 

𝑉𝑔  (𝑚/𝑠)  0.576728 0.713256 0.690267 0.60404 0.000011 2.70545 

It is immediately apparent from the plot of the estimates for roll rate 𝑝 in Figure 6.15 that EKF3 is doing 

a much poorer job of accounting for the roll rate bias drift than in the previous simulation, as the 
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estimated roll rates error steadily increases at a faster rate than in benchmark 1.  This is also 

represented in the plot of the gyro bias estimate below. 

 

Figure 6.16: Bias Estimation for Benchmark 2 in Zero Wind 

This plot shows that in addition to a more significant roll rate bias error, there yaw rate bias error that, 

unlike in benchmark 1, tracks along with the roll rate error.  The effects of these roll and yaw rate bias 

estimates are also apparent in the estimate for the yaw angle and body frame components of inertial 

velocity, which are illustrated below. 
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Figure 6.17: Extra State Estimation Results for Benchmark 2 in Zero Wind 

This poor estimate for the roll rate gyro bias brings the discussion back to observability. Table 6.3 shows 

the enabling of observability of attitude angles when acceleration is observed during straight and level 

flight.  Unfortunately, these relationships are only true for straight and level flight, so in order to find 

relationships for a coordinated turn, equation (6.22) needs to be re-solved with a single assumption of 

𝜃 = 0.  This results in the following relationships. 

 
𝜕𝛿�̇�

𝜕𝛿𝜃
= −

𝜕𝛿�̇�

𝜕𝛿𝜙
= −(𝑦𝑎𝑦 + 𝑏𝑎𝑦) sin𝜙 − (𝑦𝑎𝑧 + 𝑏𝑎𝑧) cos𝜙 (6.37) 

 
𝜕𝛿�̇�

𝜕𝛿𝜓
= −

𝜕𝛿�̇�

𝜕𝛿𝜙
= (𝑦𝑎𝑥 + 𝑏𝑎𝑥) sin𝜓 + (𝑦𝑎𝑦 + 𝑏𝑎𝑦) cos𝜓 cos𝜙 − (𝑦𝑎𝑧 + 𝑏𝑎𝑧) cos𝜓 sin𝜙 (6.38) 
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𝜕𝛿�̇�

𝜕𝛿𝜓
= −

𝜕𝛿�̇�

𝜕𝛿𝜃
= −(𝑦𝑎𝑥 + 𝑏𝑎𝑥) cos𝜓 + (𝑦𝑎𝑦 + 𝑏𝑎𝑦) cos𝜙 sin𝜓 − (𝑦𝑎𝑧 + 𝑏𝑎𝑧) sin𝜓 sin𝜙 (6.39) 

These relationships show that the yaw angle error 𝛿𝜓 is now also affected by accelerations along the Z 

axis.  In fact, all attitude angle errors are affected by accelerations along any of the axes.  This is a 

problem when it comes to estimating the attitude error states because in method 2, there are never 

more than 2 observable attitude angle modes.  The below table contains an output of calculating the 

rank of several different observability matrices.  These matrices were determined by selecting the 

columns and rows of the system and measurement models for EKF3 that correspond to the states listed 

in the “Composing States” column. 

Table 6.6: Observability of Method 2 States for All Simulations 

Observability 
Matrix 

Composing States Rank Unobservable 
Modes 

O All 15 states 13 2 

𝑶𝒂𝒍𝒍−𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝜙 𝛿𝜃 𝛿𝜓 𝑏𝑎𝑋𝑏𝑎𝑌  𝑏𝑎𝑍 𝑏𝑔𝑋𝑏𝑔𝑌𝑏𝑔𝑍   10 2 

𝑶𝒈𝒑𝒔,𝒂𝒕𝒕𝒊𝒕𝒖𝒅𝒆 𝛿𝑝𝑛 𝛿𝑝𝑒 𝛿𝑝𝑑  𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝜙 𝛿𝜃 𝛿𝜓  8 1 

𝑶𝒈𝒑𝒔,𝒂𝒄𝒄𝒆𝒍 𝛿𝑝𝑛 𝛿𝑝𝑒  𝛿𝑝𝑑  𝛿𝑢 𝛿𝑣 𝛿𝑤𝑏𝑎𝑋𝑏𝑎𝑌𝑏𝑎𝑍   9 0 

𝑶𝒈𝒑𝒔,𝒈𝒚𝒓𝒐 𝛿𝑝𝑛 𝛿𝑝𝑒 𝛿𝑝𝑑  𝛿𝑢 𝛿𝑣 𝛿𝑤𝑏𝑔𝑋𝑏𝑔𝑌𝑏𝑔𝑍  8 1 

𝑶𝒂𝒕𝒕𝒊𝒕𝒖𝒅𝒆,𝒈𝒚𝒓𝒐 𝛿𝜙 𝛿𝜃 𝛿𝜓 𝑏𝑔𝑝𝑏𝑔𝑞𝑏𝑔𝑟  4 2 

𝑶𝒂𝒄𝒄𝒆𝒍,𝒈𝒚𝒓𝒐 𝛿𝜙 𝛿𝜃 𝛿𝜓 𝑏𝑔𝑝𝑏𝑔𝑞𝑏𝑔𝑟  5 1 

𝑶𝒂𝒕𝒕𝒊𝒕𝒖𝒅𝒆,𝒂𝒄𝒄𝒆𝒍 𝛿𝜙 𝛿𝜃 𝛿𝜓 𝑏𝑎𝑋𝑏𝑎𝑌𝑏𝑎𝑍 5 1 

Interestingly, the rank of theses observability matrices never changes throughout the different 

benchmarks or even in the Dryden wind conditions that method 2 is simulated under.  The research 

performed in [22] shows that under zero specific force conditions (zero gravity and inertial Earth frame 

accelerations), the system has 6 unobservable modes.  It then shows that when any acceleration is 

added (which can include gravity), the system only haves 3 unobservable modes.  The above table shows 

that in these simulations, the number of unobservable modes never exceeds 2.  In its instantaneous 

observability analysis, [22] finds that either if the aircraft undergoes a coordinated turn or it experiences 

time varying accelerations, the number of unobservable modes is decreased from 3 to 2, with the 
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unobservable modes being associated with the angle about the jerk vector.  It makes sense that even in 

straight and level flight, only 2 unobservable modes would be observed because even very small non-

zero accelerations will increase the rank of the system model and thus the observability matrix.  Both 

the accelerometer sensor noise and small oscillating command tracking errors of the autopilot can be 

sources of such small acceleration. 

Now, both the 𝑶𝒈𝒑𝒔,𝒈𝒚𝒓𝒐  matrix and the 𝑶𝒈𝒑𝒔,𝒂𝒕𝒕𝒊𝒕𝒖𝒅𝒆 matrix have one unobservable mode, and the 

𝑶𝒈𝒑𝒔,𝒂𝒄𝒄𝒆𝒍 matrix has zero unobservable modes.  Thus, the two unobservable modes correspond to one 

attitude measurement and one gyro bias measurement.   In the results for this benchmark, both the 

bank and pitch angle estimates are shown to be corrected towards zero error, while the yaw angle error 

grows unboundedly.  Thus, it is logical to conclude that the yaw angle error is the unobservable mode 

and that small jerk vectors exist in the Z-axis of the aircraft.  With that knowledge, the system model 

relationship (6.25) that determines the dependence of gyro bias on attitude error can be examined to 

determine what the unobservable gyro bias mode is.  Below is equation (6.25) simplified around the 

single assumption of 𝜃 = 0. 
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= − [

cos𝜓 −cos𝜙 sin𝜓 sin𝜓 sin𝜙
sin𝜓 cos𝜙 cos𝜓 −cos𝜓 sin𝜙
0 sin𝜙 cos𝜙

] 

If 𝛿𝜓 is not observable ,it is not immediately clear from this relationship what the unobservable gyro 

bias mode is, as all three biases are dependent on the pitch and roll error states.  At this point, it should 

be recalled that all of the gyro bias estimates here, unlike in benchmark 1, track the true gyro bias 

estimate at least somewhat.  This leads to the notion that even though there are always at most 2 

observable gyro bias modes, the unobservable mode does not have to be exactly aligned with a 
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particular axis.  The results here indicate that the unobservable mode contains part of the yaw rate bias 

estimate and the roll rate bias estimate, as those track their true values slower than the pitch bias 

estimate.  

Nonetheless, this discovery of partially observable gyro bias states is best explored by providing a large 

time-varying jerk vector.  By providing accelerations that change in magnitude and direction, the 

attitude angle errors that the unobservable modes affect could be made time-varying.  Thus, each 

attitude angle error would be observable at different points and time, and consequently, all three gyro 

biases could share time of being observable.  In other words, it would spread the unobservable gyro bias 

mode around between the gyro bias states.  To simulate this, a 
15

90
 𝐻𝑧 sine wave signal was applied to 

the rudder with an amplitude of 8 degree deflection, and a 
25

90
 Hz sine wave signal was applied to the 

elevator with an amplitude of 8 degree deflection.  The results of the bias estimation of this simulation 

are shown below. 
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Figure 6.18: Bias Estimates for Benchmark 2 with Time-Varying Jerk Vector 

This is the best performance for gyro bias estimation that is seen in any of the simulations without wind. 

It is comparable to benchmark 2 in wind, which will be seen shortly.   By creating a jerk vector that varies 

its direction, the gyro bias states tracked their true values fairly equally.  Unfortunately, however, the 

estimates still significantly lag behind their true values.  As mentioned previously, this is due to the fact 

that the expected rate of change of the gyro bias states is zero, and thus continuous attitude error is 

necessary to update these states.  Also unfortunately, a significant time-varying jerk vector is not a 

desired way to fly most aircraft. 

In conclusion, the results seen for benchmark 2 match closely to benchmark 1 with the exception that 

the roll bias estimate does not track the true roll bias as well.  Errors in the other states are the same as 

in previous simulations and their causes are previously explained.  The cause for the poorer tracking of 

the roll bias and the subsequent effect on the roll angle estimate is due to the fact that there are only 2 
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observable attitude angle error modes and 2 observable gyro rate bias modes.  In a coordinated turn, 

the yaw angle estimate, and subsequently the yaw rate bias, are now determinable, and their inclusion 

in the estimate without 3 separate modes being observable, is a degradation of one or more of the 

other attitude angles and their gyro rate biases when compared to straight and level flight. 

6.2.2.4 Benchmark 3 

The last simulation performed in zero wind is benchmark 3 for a wings level ascent.  Below are the 

results of such a simulation. 

 

Figure 6.19: State Estimation Results for Benchmark 3 in Zero Wind 

Table 6.7: State Estimation Error Statistics for Benchmark 3 in Zero Wind 
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 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -0.24503 0.759922 0.692816 0.39663 0.000483 1.607249 

𝑉𝑎  (𝑚/𝑠)  -0.00028 0.04083 0.018931 0.036175 0.000003 0.266219 

𝜙 (𝑑𝑒𝑔)  -8.20853 6.993724 8.420343 6.737071 0.00221 22.51239 

𝜃 (𝑑𝑒𝑔)  -6.48061 4.345809 6.49162 4.329342 0.003681 14.74268 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.32631 1.950928 1.919849 1.370559 0.00043 6.221454 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.54433 1.969362 2.08712 1.380686 0.004861 7.200226 

𝑉𝑔  (𝑚/𝑠)  0.683986 0.78211 0.688272 0.778339 0.000137 3.797198 

The first thing that should be noticed about these results is that though it does suffer from a pitch rate 

bias drift, the estimate for the pitch angle estimate tracks its true value much better than method 1 

does.  Method 2 makes no assumptions about the maneuvers an aircraft is undergoing in order to 

perform its state estimation.  Because of this, there is little distinction between benchmarks 1, 2, and 3 

in terms of the method’s ability to track its states.  There is no abnormal or unique behavior seen in any 

of these maneuvers, while method 1 introduces a steady state error in attitude in benchmark 2 and true 

pitch angle dependent pitch errors in benchmark 3.  In all of these maneuvers, the estimate for the 

ground speed 𝑉𝑔 is corrected 100% to its true value at each GPS / EKF3 measurement update.  The 

altitude, airspeed, and side specific force track their true states with a mean zero error.  And last, the 

angular rates 𝑝 and 𝑞 and the attitude angles 𝜃 and 𝜙 only incur steady error from bias drift, which is 

about to be shown. 

Below are plots of the extra estimated states from method 2. 
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Figure 6.20: Extra Estimated States for Method 2 in Benchmark 3 and Zero Wind 
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Figure 6.21: Estimated Bias States for Method 2 in Benchmark 3 and Zero Wind 

Now, it should be noted that for benchmark 3, like in the method 1 simulations, the bias drift rate was 

increased from 
3

90

𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑2
 to 
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 so that the same 3

𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 gyro bias is obtained by the end of the 

simulation.  It can be seen in the above bias estimate plot that EKF3 does a poor job of estimating the 

bias states, as it just begins to change its bias estimate for the pitch and roll biases at the end of the 

simulation.  By visually comparing the gyro bias estimates from benchmark 1 in Figure 6.14 and the 

estimates here in Figure 6.21, it can be seen that the bias estimation here looks very similar to the first 

30 seconds of the benchmark 1 simulation.  There is a small difference, however, in that the bias 

estimates here begin moving away from zero sooner than in benchmark 1.  Despite the increased rate of 

gyro bias drift, this makes sense for a number of reasons. 

First, the bias drift rate is still assumed to be zero by the system model, meaning that the gyro bias still 

does not change naturally, and is dependent on attitude errors to update it. It can be noticed that the 
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attitude errors are in fact larger here than in benchmark 1 – both pitch and bank estimates grow about 5 

degrees larger.  This is explained by realizing that as the gyro bias estimate error grows, the attitude 

error grows, and thus the more the gyro bias states are changed.  The gyro bias drift is faster in 

benchmark 3 than benchmark 1, thus the attitude error grows faster, and thus the gyro bias estimates 

grow faster. 

Second, it makes sense that the gyro bias estimates only begin to track the pitch and bank angle rate 

biases.  This behavior is explained by first, like in the previous benchmarks, simplifying (6.22) about the 

maneuver conditions.  In this case that is only the assumption 𝜙 = 0.  This results in the following 

relationships in the system model: 

 
𝜕𝛿�̇�

𝜕𝛿𝜃
= −

𝜕𝛿�̇�

𝜕𝛿𝜙
= (𝑦𝑎𝑥 + 𝑏𝑎𝑥) sin 𝜃 − (𝑦𝑎𝑧 + 𝑏𝑎𝑧) cos 𝜃 (6.40) 

 
𝜕𝛿�̇�

𝜕𝛿𝜓
= −

𝜕𝛿�̇�

𝜕𝛿𝜙
= (𝑦𝑎𝑥 + 𝑏𝑎𝑥) sin𝜓 cos 𝜃 + (𝑦𝑎𝑦 + 𝑏𝑎𝑦) cos𝜓 + (𝑦𝑎𝑧 + 𝑏𝑎𝑧) sin𝜓 sin 𝜃 (6.41) 

 
𝜕𝛿�̇�

𝜕𝛿𝜓
= −

𝜕𝛿�̇�

𝜕𝛿𝜃
= −(𝑦𝑎𝑥 + 𝑏𝑎𝑥) cos𝜙 cos 𝜃 − (𝑦𝑎𝑦 + 𝑏𝑎𝑦) sin𝜓 + (𝑦𝑎𝑧 + 𝑏𝑎𝑧) cos𝜓 sin 𝜃 (6.42) 

This shows that, like benchmark 2, observability of each attitude angle error state is enabled by 

acceleration on any of the axes.  However, it should be recalled that there are always at most 2 

observable attitude error modes, and the unobservable mode is the angle about the jerk vector.   In a 

rapid climb like is performed here, and in zero wind, the only substantial jerk vector is about the body Z-

axis.  Because the climb of the aircraft reaches only about 30 degrees in pitch, and spends much of its 

time at smaller pitch angles than that, the yaw angle is the angle that is less observable than the others.  

Because of this, it makes sense that the attitude error state never gets very large and that the 

subsequently derived yaw bias estimate never really grows inside the simulation duration.   Figure 

Figure 6.20 also backs this up, as it appears that the yaw angle estimate is growing exponentially, unlike 
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the pitch angle and bank angle estimates.  Perhaps if a climb was simulated for a much lengthier amount 

of time, interesting dynamics between the different bias estimate states could be seen, but such a 

simulation is not part of this research.  Most small UAVs usually do not need to climb for very large 

amounts of time because their operating altitude is usually not very high off of the ground. 

In conclusion, like all other simulations performed thus far, no unique steady state estimates of any of 

the states were observed other than the large attitude errors in modelling the gyro bias drifts.  Method 

2 does not suffer the same pitch estimate behavior under benchmark 3 as method 1 does.  However, 

errors in gyro bias state estimation still greatly hinder the accuracy of the attitude estimation in this 

benchmark. 

6.2.3 Dryden Wind 

Now that the raw performance of method 2 without any wind has been analyzed, Dryden wind can be 

added to the simulations so that the effects of wind on method 2’s performance can be assessed. 

6.2.3.1 Benchmark 1 without Gyro Bias Drift 

The first simulation of method 2 in wind that is performed is benchmark 1, straight and level flight, but 

without gyro bias drift.  Exclusion of gyro bias enables analysis of the direct effects of wind, as it 

removes the effects of gyro bias.  Below are the results of this simulation. 
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Figure 6.22: State Estimation Results for Method 2 Benchmark 1 in Dryden Wind and Zero Bias Drift 

Table 6.8: State Estimation Error Statistics for Method 2 Benchmark 1 in Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  -0.21503 1.40745 1.12608 0.871184 0.000011 2.941845 

𝑉𝑎  (𝑚/𝑠)  -0.00033 0.030879 0.019375 0.024045 0.000007 0.265249 

𝜙 (𝑑𝑒𝑔)  -0.95443 6.605894 5.21015 4.171354 0.000301 17.27692 

𝜃 (𝑑𝑒𝑔)  -0.5144 5.852534 4.524938 3.746925 0.000066 14.61207 

𝑝 (𝑑𝑒𝑔/𝑠)  0.19336 1.756825 1.407942 1.068318 0.000424 5.3913 

𝑞 (𝑑𝑒𝑔/𝑠)  0.179876 1.807966 1.428433 1.122698 0.000165 7.73369 

𝑉𝑔  (𝑚/𝑠)  0.036958 0.409217 0.27293 0.307125 0.000001 1.704375 

 

These results show the effects of gyro bias are not present, as there is no drift in the estimated pitch and 

roll rates.  Unlike the previous method 2 simulations, there are now significant oscillations in the true 

values for all components.  These oscillations in the true values are direct result of the force and 
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moment disturbances imparted on the aircraft from the Dryden wind model and the autopilot’s reaction 

to these forces and moments.  Since this is the same wind model and autopilot used in method 1’s 

simulations, these variations are very similar, but not identical, as the wind uses an unseeded randomly 

generated noise model. 

Now, the first thing that should be noticed when comparing these results to the zero wind results in 

section 6.2.2.1 is that there is a much larger variation in the estimated pitch and bank angles.  Here, the 

bank angle estimate error becomes as large as 17 degrees, and without wind it only reaches an error of 

3 degrees.  Similarly, here the pitch angle estimate error becomes as large 14 degrees, and without wind 

it only reaches an error of just under 3 degrees.  In order to find why this is happening, the additional 

source of error should first be determined.  

 To determine the source of the extra attitude error, it should be recalled that the attitude angle 

estimates are a direct output of the IMU integration and is only corrected by EKF3 measurements when 

it can be.  At each IMU measurement update, which is the same time as EKF3’s time update to the 

covariance matrix, the attitude estimate is updated by the simple integration depicted in equations (6.3) 

and (6.4).  In those equations, the current attitude estimate �̂�𝑘 is computed from the a-priori attitude 

estimate �̂�𝑘−1 and the current angular rate measurements �̂�𝑘.  It could be expected that this 

integration would produce more error in the IMU attitude estimate in wind than without wind due to 

the more variable nature of the aircraft’s attitude 𝝍 and angular rates 𝝎. 

The effects of wind on integration error can be measured directly in the simulations, as the true known 

states are available.  To measure the integration error, the absolute value of the difference between the 

true attitude from the previous time step and the current true attitude can be written as equation 

(6.34). 
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 𝚫𝛙k = [

Δ𝜙𝑘
Δ𝜃𝑘
Δ𝜓𝑘

] = |[

𝜙𝑘
𝜃𝑘
𝜓𝑘

] − [

𝜙𝑘−1
𝜃𝑘−1
𝜓𝑘−1

]| (6.43) 

The capital delta (Δ) symbol is used here to designate the difference between IMU updates so that 

these quantities will not be confused with EKF3’s error states, where the lower case delta symbol (𝛿) is 

used.   

Now that the true delta across the IMU attitude states 𝝍𝑘−1 and 𝝍𝑘 has been determined, the error 

between the true difference 𝚫𝛙 and the estimated difference can be found.  The difference between 

the true attitude change and the estimated attitude change can be found by rewriting equations (6.3) 

and (6.4) as equation (6.44). 

 𝚫𝝍�̂� = [

Δ�̂�𝑘
Δ�̂�𝑘
Δ�̂�𝑘

] = |[

Δ𝜙𝑘
Δ𝜃𝑘
Δ𝜓𝑘

] − 𝑇𝑠 ([

1 sin �̂�𝑘−1 tan 𝜃𝑘−1 cos �̂�𝑘−1 tan 𝜃𝑘−1
0 cos �̂�𝑘−1 −sin �̂�𝑘−1
0 sin �̂�𝑘−1 sec 𝜃𝑘−1 cos �̂�𝑘−1 sec 𝜃𝑘−1

] [

�̂�𝑘
�̂�𝑘
�̂�𝑘

])| (6.44) 

While comparing this value between wind scenarios and zero wind scenarios will yield insights on the 

effects of wind, it by itself will not yield insights on the individual effects of bad estimates for attitude 

and estimates for the angular rates.  Thus, two more descriptions of the change across the IMU can be 

defied:  

 𝚫𝝍𝑘⏞=

[
 
 
 Δ𝜙
⏞
𝑘

Δ𝜃⏞𝑘

Δ𝜓⏞ 𝑘]
 
 
 

= |[

Δ𝜙𝑘
Δ𝜃𝑘
Δ𝜓𝑘

] − 𝑇𝑠 ([

1 sin𝜙𝑘−1 tan 𝜃𝑘−1 cos𝜙𝑘−1 tan 𝜃𝑘−1
0 cos𝜙𝑘−1 −sin𝜙𝑘−1
0 sin𝜙𝑘−1 sec 𝜃𝑘−1 cos𝜙𝑘−1 sec 𝜃𝑘−1

] [

�̂�𝑘
�̂�𝑘
�̂�𝑘

])| (6.45) 

 𝚫𝝍𝑘̅̅ ̅̅ ̅̅ = [

Δ𝜙̅̅ ̅̅ 𝑘
Δ𝜃̅̅̅̅ 𝑘
Δ𝜓̅̅ ̅̅ 𝑘

] = |[

Δ𝜙𝑘
Δ𝜃𝑘
Δ𝜓𝑘

] − 𝑇𝑠 ([

1 sin𝜙𝑘−1 tan 𝜃𝑘−1 cos𝜙𝑘−1 tan 𝜃𝑘−1
0 cos𝜙𝑘−1 −sin𝜙𝑘−1
0 sin𝜙𝑘−1 sec𝜃𝑘−1 cos𝜙𝑘−1 sec 𝜃𝑘−1

] [

𝑝𝑘
𝑞𝑘
𝑟𝑘
])| (6.46) 
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Equation (6.45) computes the IMU change in attitude estimate 𝚫𝝍⏞  as if there was zero attitude error, 

but still uses the estimated angular rates that is determined from the current gyro measurements and 

EKF3 gyro bias states.  Equation (6.46) computes the IMU change in attitude estimate 𝚫𝝍̅̅ ̅̅  as if there was 

zero error in both of these measurements.  By using 100% true values as inputs, the output of equation 

(6.46) provides insights into the accuracy of this integration method, and by comparing its value to the 

other versions of the IMU change in attitude estimate, the error from the inaccuracy of the integration 

method can be compared to attitude error generated from a-priori attitude error and current angular 

rate error. 

The table below contains the average value of these three IMU update magnitudes over the course of 

the 90 second benchmark 1 with zero bias drift simulation.  The first three columns of the table are the 

components of the measured average error, and the last column is the sum of these three components. 

Table 6.9: IMU Attitude Propagation Error for Benchmark 1 in Dryden Wind and Zero Rate Bias 

 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍𝒌̅̅ ̅̅ ̅̅ /𝒏) 
0.01687 0.017239 0.018454 0.052563 

Mean Error with True Attitude (𝚺𝚫𝝍𝒌⏞/𝒏) 0.022329 0.022629 0.023645 0.068603 

Mean Estimate Error (𝚺𝚫𝝍�̂�/𝒏)  0.022413 0.022542 0.024028 0.068983 

The variable 𝑛 is the number of IMU updates in the simulation, which is the duration of the simulation 

multiplied by the sample rate of the IMU in Hz.  In all simulations in this document, the IMU sample rate 

is 100 𝐻𝑧.  Thus, 𝑛 in this simulation is 9,000.  

This information provided in the above table yields a very insightful conclusion.  There is only a marginal 

difference between the total of the components of the mean estimate error and the mean error of the 

estimate that used only the true attitude.  Then, there is only a 24% drop in the estimate error when 

both true attitude states and true angular rates are used.  This indicates that around 76% of the error of 
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the IMU attitude propagation actually comes from the integration method itself.  Even with true states 

are used, 76% of the error in the attitude estimate is still present.  Thus, a future effort could endeavor 

to address this integration problem, perhaps by using higher orders of integration or by using a more 

appropriate mix of a-priori and current data.  Interpolation between data points could perhaps be used 

in conjunction with a higher order integrator to reduce this percentage.  However, such a study is 

outside the scope of this research.  That said, it is still unreasonable to expect 100% accuracy from an 

integration method when only discrete values are provided.  In order to capture all of the dynamics of 

the angular rates in wind, the maximum frequency of the change of the rates would have to been know, 

and the sample rate would have meets Nyquist criterion (twice that frequency).  Unfortunately, the 

noise used in the Dryden model is wide band, so this knowledge is not really possible.  

Now, it is important to note that this high percentage of error being due to the integration method is 

only the case for the Dryden wind scenario.  Below is a table of these same measures for Benchmark 1 

with zero bias drift in zero wind. 

Table 6.10: IMU Attitude Propagation Error for Benchmark 1 in Zero Wind and Zero Rate Bias 

 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍⏞ /𝒏) 0.000012 0.000073 0.000061 0.000146 

Mean Error with True Attitude (𝚺𝚫𝝍̅̅ ̅̅ /𝒏) 0.013861 0.014003 0.014243 0.042108 

Mean Estimate Error (𝚺𝚫�̂�/𝒏)  0.013875 0.014 0.01426 0.042136 

This shows that in zero wind, the error of each IMU integration step is roughly 50% smaller than error in 

windy conditions.  More importantly however, it shows that the error of the estimate when the true 

attitude and angular rates are used is essentially zero, and the error when only true attitude used is 

essentially identical to the actual estimate’s error.  This means that essentially 100% of the error in the 
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wind-free scenario is due to errors in the angular rate estimates.  The angular rate estimates are 

affected by both the gyro sensor noise and the accuracy of the current gyro rate bias estimate.  

It could also be noticed that in the straight and level scenario, there was comparatively very little error 

in the attitude estimates.  One could postulate that with more attitude error, more error could be 

attributed the attitude solution.  However, in benchmark 2, the effect of the larger attitude error on the 

IMU propagation error is still negligible.  This makes sense, as the Euler angle propagation equation of 

(3.8) in straight and level flight directly maps the angular rates one to one to the Euler angles.  Some 

attitude errors creates small cross-coupling terms, but for the most part, the equation remains a one-to-

one mapping.  This behavior is different in other scenarios, and is addressed in the explanation of those 

simulations. 

Now that the source of the extra attitude error that is encountered with wind has been identified, how 

that error is accounted for by EK3 needs to be addressed.  To support that analysis, attitude error 

observability must be re-addressed.  Thus, below are the results of the estimation of the remaining EKF3 

states. 
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Figure 6.23: Extra Estimated States for Method 2 Benchmark 1 in Wind with Zero Rate Bias 

 

Figure 6.24: Sensor Bias Estimates for Method 2 Benchmark 1 in Wind with Zero Rate Bias 
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The sensor bias estimate plot above indicates that unlike in the zero wind and zero bias scenario, the 

estimate for all three bias axes varies significantly.  It makes sense that this happens because continually 

large attitude errors, which are seen here in wind but not in the zero wind scenarios, will manifest in the 

attitude errors per equation (6.25).  Without wind, attitude errors are quickly corrected out, and thus 

the only reason that the bias states would be populated is if there is a constant attitude error, as occurs 

from gyro sensor biases.  With wind, the IMU solution has shown to cause large errors that are not 

immediately corrected out.  They are corrected out over time, but this continual attitude error builds up 

into the gyro biases.  Fortunately though, when the large attitude errors are corrected out, the biases 

also go back to zero, and thus the bias estimates stay around zero. 

Now, the question remains of why aren’t these attitude errors corrected out just as fast as without 

wind.  To understand that, the average Kalman gain that adjusts the attitude states can be measured. 

The below table contains the average value of the sum of the 7th, 8th, and 9th row of the Kalman gain 

matrix, which correspond to the amount that the bank, pitch, and yaw angles, respectively, are updated 

at each EKF3 measurement update.  Further, it is only the sum of the 4th, 5th, and 6th columns of each 

row, because those are the columns that correspond to the velocity error measurement.  The units of 

these average sums are radians per meter per second, as they are the gain that maps the measured 

velocity error to the attitude error state.  The other first three columns in the table are always very close 

to zero, as position error is not directly related to the attitude error states in the system model, and any 

non-zero value hat is in those columns is due to the propagation of the covariance between the attitude 

error and velocity error states through the system model relation between the velocity error and the 

position error states. 
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Table 6.11: Kalman Gain Averages for Attitude Error States from Benchmark 1 in Dryden Wind with Zero Rate Bias 

 𝝓 Gain: 

𝚺𝑲(𝟕, 𝟒: 𝟔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
𝜽 𝐆𝐚𝐢𝐧: 𝚺𝑲(𝟖, 𝟒: 𝟔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝍 Gain: 

𝚺𝑲(𝟗, 𝟒: 𝟔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Average Kalman Gain  
(radians/meter/s) 0.01063 0.010652 0.016765 

 

These values for the benchmark 1 in wind simulation can be compared to the same values for the zero 

wind simulation, which are shown below: 

Table 6.12: Kalman Gain Averages for Attitude Error States from Benchmark 1 in Zero Wind with Zero Rate Bias 

 𝝓 Gain: 𝚺𝑲(𝟕, : )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜽 𝐆𝐚𝐢𝐧: 𝚺𝑲(𝟖, : )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝍 Gain: 𝚺𝑲(𝟗, : )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Average Kalman Gain  
(radians/meter/s) 0.009577 0.009592 0.005249 

It can be noticed that in wind, there is a slight increase in the Kalman gain for the bank and pitch angles 

and a substantial increase in the Kalman gain for the yaw angle. This makes sense because as previously 

discussed, in straight and level flight the yaw angle is much less observable because there are ideally no 

X-Y plane accelerations.  However, in wind, the aircraft experiences significant accelerations from all 

directions.    Table 6.3 shows that when accelerations in the X-Y plane are added, the yaw angle error is 

able to be observed.  In fact, the Kalman gains presented here show that all three attitude angles are 

corrected more in wind than they are in zero wind.   This notion agrees with the observability research 

performed in [22], as in windy conditions, the jerk vector varies significantly in both magnitude and 

direction. 

So, in conclusion, wind assists in the observability of all of the attitude error states.  While it has been 

shown that the attitude estimates are corrected more in wind than without wind, integration errors that 

arise from the integration method cause a net growth in attitude estimate error when Dryden wind is 

added to the simulation.  Further, it has been shown that the estimates of the states that are input into 
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the IMU integration equation (6.3) are not the reason for the majority of the error, it is in fact the 

integration method itself, which provides a nice segue for future work. 

 

 

6.2.3.2 Benchmark 1  

Now that the performance of state estimation method 2 in Dryden in wind has been analyzed without 

gyro bias drift, gyro bias drift can be added back into the simulation so that additional effects of the gyro 

bias may be observed. 

 

Figure 6.25: State Estimation Results for Method 2 in Benchmark 1 and Dryden Wind 

Table 6.13: State Estimation Error Statistics for Method 2 in Benchmark 1 and Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 
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ℎ (𝑚)  -2.29423 1.207648 2.295253 1.205711 0.004419 5.014218 

𝑉𝑎  (𝑚/𝑠)  0.000185 0.032004 0.020298 0.024743 0.000007 0.283372 

𝜙 (𝑑𝑒𝑔)  -8.46745 5.769247 8.522576 5.68748 0.000181 21.90765 

𝜃 (𝑑𝑒𝑔)  -5.77646 8.164708 7.734534 6.340662 0.000182 25.50788 

𝑝 (𝑑𝑒𝑔/𝑠)  -0.99568 1.816456 1.636558 1.269792 0.00028 6.935281 

𝑞 (𝑑𝑒𝑔/𝑠)  -0.51144 1.796622 1.49002 1.126518 0.000272 7.005333 

𝑉𝑔  (𝑚/𝑠)  0.971821 0.891811 0.99825 0.862122 0.000085 4.969819 

The estimates here for every state except the pitch and bank angles and a barely visible drift in the 

estimates for the angular rates 𝑝 and 𝑞 are very similar to the benchmark 1 simulation without gyro rate 

bias.  This makes sense, as the gyro bias states affect the attitude angles the most, and are used to 

calculate 𝑉𝑔 and ℎ at every IMU update, but 𝑉𝑔 and h are essentially 100% corrected at each GPS update 

as discussed previously. 

There is no unexpected extra behavior in these results, as in the increase in attitude error can be related 

to the addition of gyro bias drift.  The below plots contain the extra states that method 2 produces, 

including the bias drifts. 



www.manaraa.com

155 

 

Figure 6.26: Extra State Estimates for Method 2 in Benchmark 1 and Dryden Wind 
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Figure 6.27: Bias State Estimates for Method 2 in Benchmark 1 and Dryden Wind 

The unbounded behavior of the yaw angle estimate and the fact that the yaw bias state remains close to 

zero indicates that the yaw angle is the unobservable mode in this scenario.  This matches all the other 

benchmark 1 simulations, and makes sense because even though there are now disturbances that give 

accelerations in the X-Y plane that enable the yaw error to be observed, the majority of the acceleration 

still comes from gravity.  Because in straight and level flight, the pitch and bank angles are coupled to all 

three axes’ acceleration where the yaw angle is only coupled to X and Y axes accelerations, the yaw 

angle error is less observable than the other angle errors. 

Now, it should be recalled that without gyro bias drift, only 24% of the IMU propagation error arose 

from errors in estimates for the angular rates.  The below table shows the components of error in the 

attitude propagation for this simulation with gyro bias drift added. 
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Table 6.14: IMU Attitude Propagation Error for Benchmark 1 in Dryden Wind 

c 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍𝒌̅̅ ̅̅ ̅̅ /𝒏) 
0.01687 0.017239 0.018454 0.052563 

Mean Error with True Attitude (𝚺𝚫𝝍𝒌⏞/𝒏) 0.022329 0.022629 0.023645 0.068603 

Mean Estimate Error (𝚺𝚫𝝍�̂�/𝒏)  0.022413 0.022542 0.024028 0.068983 

These results show that with bias drift, 30% of the attitude error comes from poor knowledge of the 

angular rate estimates.  It makes sense that this percentage is higher than without bias drift because 

now the bias estimates how significant error.  However, the above table shows that the integration 

method is still responsible for 70% of the attitude error.  Nonetheless, poor gyro rate bias estimation 

can still cause long-term biases in the attitude states, as is shown in the estimate for the bank angle in 

this simulation. Fortunately though, those biases do not always last since their errors are observable, as 

is shown in the estimate for the pitch angle in this simulation, and is shown better next in benchmark 2. 

In conclusion, the only change when gyro rate bias drift was added to the simulation of benchmark 1 

was an increase in attitude error.  While the attitude error increased, the majority of the attitude error 

can still be blamed on the integration method and not the gyro rate bias estimation, as the attitude 

error generated by the rate bias can still be accounted for by EFK3.  However, that error can only be 

removed if those attitude angles are observable.  In this benchmark, the yaw angle is the unobservable 

angle, so the pitch and bank angles are effectively corrected by EFK3. 

6.2.3.3 Benchmark 2 

This section contains the results of simulating method 2 state estimation under a coordinated turn 

maneuver in Dryden wind. 
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Figure 6.28: State Estimation Results for Method 2 in Benchmark 2 in Dryden Wind 

Table 6.15: State Estimation Error Statistics for Method 2 in Benchmark 2 in Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.030457 2.323744 1.929098 1.295716 0.000046 6.508412 

𝑉𝑎  (𝑚/𝑠)  0.000179 0.026681 0.017143 0.020445 0.000002 0.285108 

𝜙 (𝑑𝑒𝑔)  -1.79709 9.909461 8.241748 5.787345 0.000292 22.06134 

𝜃 (𝑑𝑒𝑔)  3.551419 8.174121 6.504409 6.092471 0.00085 25.6019 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.03095 1.851849 1.679188 1.29319 0.000197 6.998946 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.28827 1.872867 1.858952 1.308192 0.000633 7.484872 

𝑉𝑔  (𝑚/𝑠)  0.351005 0.817978 0.638282 0.620368 0.000086 4.469241 

These results show that like Benchmark 1 in wind, there is as substantial increase in the magnitude of 

the attitude error when wind is added to the simulation.  Also like in benchmark 1 in wind, there is no 

noticeable increase in error in any of the other states, except for the altitude and ground speed errors 
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which are corrected at every GPS update as they have in all the other previous simulations.  However, it 

can be noticed that there is no longer a noticeable drift in the pitch or bank angle estimates; there are 

only wild swings in the estimate errors.  Do determine why that is, the table below contains the errors 

introduced from the IMU propagation from the IMU propagator’s different sources of information. 

Table 6.16: IMU Attitude Propagation Error in Benchmark 2 and Dryden Wind 

 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍𝒌̅̅ ̅̅ ̅̅ /𝒏) 0.016291 0.022511 0.137849 0.176651 

Mean Error with True Attitude (𝚺𝚫𝝍𝒌⏞/𝒏) 0.023908 0.025817 0.145326 0.195051 

Mean Estimate Error (𝚺𝚫𝝍�̂�/𝒏)  0.02658 0.026475 0.146673 0.199729 

This table shows that the vast majority, 88%, of the error introduced from the attitude propagation is 

incurred from the integration itself. When true attitude and true angular rate information is fed through 

the integrator, 88% of the error still remains.  The table also shows that the error produced from the 

actual estimate and the error produced from the estimate with just the true attitude angles are 

essentially the same; only 2.3% of the error can be attributed to the attitude estimates.  This means that 

only 10% of the IMU propagation error can be attributed to bad estimates for the angular rates.  This is a 

decrease in the attitude error’s dependence on the gyro bias estimates when compared to benchmark 1 

in wind, where 30% of the error was attributed to the angular rate error.  A similar improvement can 

also be seen with respect to benchmark 2 in zero wind, where according to the table below, about 30% 

of the error is due to the angular rate estimates. 

Table 6.17: IMU Attitude Propagation Error in Benchmark 2 and Zero Wind 

 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍𝒌̅̅ ̅̅ ̅̅ /𝒏) 0.000035 0.00372 0.120072 0.123827 

Mean Error with True Attitude (𝚺𝚫𝝍𝒌⏞/𝒏) 0.019659 0.014726 0.13992 0.174306 

Mean Estimate Error (𝚺𝚫𝝍�̂�/𝒏)  0.014844 0.0146 0.140437 0.169881 



www.manaraa.com

160 

 

This decreased dependence of the attitude error on the angular rate error over both benchmark 2 in 

zero wind and benchmark 1 in wind can be attributed to an improved estimate for the gyro rate bias, as 

shown below.  The only other component of the angular rate error is the noise of the gyro sensors, 

which does not change from simulation to simulation. 

 

Figure 6.29: Gyro Bias Estimates for Benchmark 2 in Dryden Wind 

This plot shows improved gyro bias tracking over benchmark 2 in zero wind.  Further, the magnitude of 

the error of the gyro bias estimates is on par with the extra maneuvers simulation performed in section 

6.2.2.3 with benchmark 2 in zero wind.  This makes sense, as the poor observability of the roll and yaw 

rate biases seen in benchmark 2 in zero wind was attributed to the lack of a variable jerk vector.  It was 

shown in section 6.2.2.3 that by adding an aircraft acceleration that varies in magnitude and direction, 

the unobservable attitude error mode and thus the unobservable gyro bias mode become shared 



www.manaraa.com

161 

amongst all the axes. The addition of wind also performs this action by creating forces and moments on 

the aircraft that the autopilot then corrects.  This is perhaps the most important realization about 

method 2’s attitude estimation performance.  By performing significant maneuvers or from being under 

the influence of Dryden wind, the observability and thus the long-term accuracy of the attitude errors 

and gyro bias estimates is maximized.  There are still only 2 observable attitude error and gyro bias 

modes at any given point in time, but by performing maneuvers, errors in the different axes can be 

found.  In the context of a coordinated turn, the pitch and bank angle errors, even with significant gyro 

bias drift, are corrected to zero mean error.  Unfortunately, the IMU propagation method of method 2, 

at least in the form exists here, causes large variations in the attitude estimates when Dryden wind is 

added.  Nonetheless, the improved observability of the attitude estimates from the wind is able to 

continually correct out the pitch and roll attitude error to keep the attitude solution bounded and have 

zero mean error. 

Last, below are the extra states that are estimated with method 2 for this simulation. 
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Figure 6.30: Extra State Estimation Results for Method 2 in Benchmark 2 and Dryden Wind 

These results show that for benchmark 2 in zero wind, unlike the roll and pitch estimates, there is a 

slight long-term bias in the yaw angle estimate.  This is still an improvement over benchmark 2 in zero 

wind, but it makes sense that the yaw angle error is less observable than the other attitude errors, given 

that most of the acceleration experienced by the aircraft, even in wind, is due to gravity.  These results 

also show significant errors in the body frame components of the inertial velocity vector, but as shown 

in Figure 6.28, the errors incurred into the ground speed and altitude estimates from these measures 

are still corrected out at each GPS measurement update. 

In conclusion, benchmark 2 in Dryden wind suffers from additional attitude error when compared to 

benchmark 2 without wind.  The vast majority of this error actually comes from the integration method 

of the IMU estimates and not the actual estimates for the angular rates or attitude.  Further, unlike 
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benchmark 2 in zero wind, the attitude estimates have near zero mean error.  This centering of the 

attitude estimates on the true values is due to the increased attitude error and gyro bias observability 

encountered when variable accelerations are encountered from the Dryden wind. 

6.2.3.4 Benchmark 3 

The final method 2 simulation performed is for a wings level ascent in Dryden wind.  Below are the 

results of this simulation. 

 

Figure 6.31: State Estimation Results for Method 2 in Benchmark 3 and Dryden Wind 

Table 6.18: State Estimation Error Statistics for Method 2 in Benchmark 3 and Dryden Wind 

 𝜇 𝜎 𝜇𝑎𝑏𝑠 𝜎𝑎𝑏𝑠 𝑚𝑖𝑛𝑎𝑏𝑠 𝑚𝑎𝑥𝑎𝑏𝑠 

ℎ (𝑚)  0.828567 0.749619 0.830541 0.74743 0.000125 3.003041 

𝑉𝑎  (𝑚/𝑠)  0.000444 0.071805 0.0376 0.061169 0.000006 0.809414 

𝜙 (𝑑𝑒𝑔)  -11.7071 5.917904 11.77308 5.785396 0.002469 19.89022 



www.manaraa.com

164 

𝜃 (𝑑𝑒𝑔)  7.48828 6.067708 8.137141 5.164619 0.007361 17.57743 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.26613 1.940041 1.886599 1.344104 0.002697 6.213617 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.67052 2.062024 2.210278 1.468405 0.001065 7.728789 

𝑉𝑔  (𝑚/𝑠)  -0.19031 0.806317 0.583808 0.587693 0.000074 2.723817 

 

These results show that like all other method 2 simulations, the only states of concern are the estimates 

for the pitch and roll angles.  Errors in the ground speed that arise from attitude errors are corrected at 

each GPS measurement update, and fluctuations in the estimated altitude are visually lost within the 

large change in altitude for this benchmark.  However, there is a visible drift in the angular rate 

estimates. 

So, to address the attitude errors seen here, it is important to note that as the angular rate bias drifts 

over time, the estimates for the pitch and bank angles do not grow unboundedly.  The maximum pitch 

error seen is about 20 degrees and the maximum bank angle error seen is about 18 degrees.  That said, 

the plot below shows how the yaw angle error does in fact grow unboundedly over the course of the 

simulation.   
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Figure 6.32: Extra State Estimation Results for Method 2 in Benchmark 3 and Dryden Wind 

In order to assess the attitude angle observability, the estimates for the gyro bias over time needs to be 

presented.  These estimates are below.   
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Figure 6.33: Bias Estimation Results for Method 2 in Benchmark 3 and Dryden Wind 

 

These results show that the estimated gyro bias stays close to zero over the simulation.  This makes 

sense because like in benchmark 3 in zero wind, even though all attitude and gyro bias states are able to 

be related to the velocity errors, there are still at most 2 observable modes.  In benchmark 3 in zero 

wind, this mode was shown to be about the yaw angle.  This appears to also be the case here, but it 

should be noticed that and increased variation in the gyro bias drift is seen here, when compared to 

benchmark 3 in zero wind.  Like benchmark 2 in wind, benchmark 3 in wind experiences a jerk vector 

that varies in magnitude and direction.  As such, the gyro bias states can be all be seen to begin to 

change towards the simulation.  Unfortunately, like benchmark 3 in zero wind demonstrates, the gyro 
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bias drift rate is still expected to be zero by the system model, and thus the estimates for the gyro bias 

require large errors in attitude before they begins to change their values.  Due to this, the results do not 

really indicate which gyro rate biases are more observable than the others. In benchmark 3 in zero wind, 

it was shown with decent certainty that the roll and pitch rate biases were more observable, but in 

wind, since the unobservable modes drifts some, a confident determination of which axes are more 

observable cannot really be made in such a short simulation. 

Now, even though the gyro bias estimates are close to zero and cannot be well-characterized, the 

observability of the attitude solutions can be.  The solutions for the pitch and bank angles do not grow 

unboundedly.  This indicates that the pitch and bank angles are being constantly corrected and that the 

pitch and bank angle states are observable.  In benchmark 3 in zero wind, where even though the 

attitude errors were shown to be dependent on all axes of acceleration, the yaw angle proved to be the 

most unobservable angle because with a climb angle of 30 degrees, most of the weight of all of the 

measured accelerations were placed on updating the roll and pitch estimates.  The same notion applies 

here for benchmark 3 in wind, but one might expect a small increase of observability to the yaw angle 

error relative to the other angles due to the increase in variation of the jerk vector.  Unfortunately, 

however, such an increase isn’t really seen, as the yaw angle estimate errors both with and without 

wind grow to between 30 and 35 degrees over the 20 second simulation. 

Last, now that the relative observability of the different attitude angle errors and gyro bias axes has 

been addressed, it can be noticed that there really isn’t an increase in error in the attitude solution for 

benchmark 3 when wind was added.  Significant increases in attitude error magnitude were seen when 

wind was added to both benchmarks 1 and 2.  However, the magnitude of the error in bank angle is 

nearly identical for benchmark 3 with and without wind, and the error in the pitch angle for benchmark 

3 is a little bit better with wind than without wind.  To quantify that error, below are tables that 
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represent the errors introduced from the IMU propagation for benchmark 3 both with wind and without 

wind. 

 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍𝒌̅̅ ̅̅ ̅̅ /𝒏) 0.033001 0.022855 0.03074 0.086596 

Mean Error with True Attitude (𝚺𝚫𝝍𝒌⏞/𝒏) 0.040258 0.026719 0.041417 0.108395 

Mean Estimate Error (𝚺𝚫𝝍�̂�/𝒏)  0.038787 0.026053 0.045793 0.110634 

 

 𝚫𝝓 
(degrees) 

𝚫𝜽 
(degrees) 

𝚫𝝍 
(degrees) 

𝚫𝝓+ 𝚫𝝓+ 𝚫𝝓 
(degrees) 

Mean Error with True Attitude and Angular 

Rates (𝚺𝚫𝝍𝒌̅̅ ̅̅ ̅̅ /𝒏) 0.000077 0.000626 0.000144 0.000847 

Mean Error with True Attitude (𝚺𝚫𝝍𝒌⏞/𝒏) 0.021064 0.018364 0.020979 0.060407 

Mean Estimate Error (𝚺𝚫𝝍�̂�/𝒏)  0.02352 0.017948 0.023682 0.06515 

These table show that the magnitude of the error introduced by actual method 2 IMU propagation 

equation is 60% larger in roll and 45% larger in pitch. The only way that this error would be accounted 

for to result in a roughly equivalent magnitude of errors between the zero wind and wind scenarios is an 

increase in the observability of the pitch and roll angle error states.  This makes sense, given that the 

yaw angle was just determined to be the unobservable mode and increased observability of the attitude 

errors can be expected with winds or maneuvers.   That said, it follows that such an increased correction 

of the attitude angles was not seen between the Dryden and zero wind simulations of method 1 because 

in the method 1 simulation, the gyro rate biases were tracked very similarly between with and without 

wind.  In the benchmark 3 simulations, there is an increased rate of bias drift, which results in larger 

errors in bias estimation, which in turn leads to a larger overall attitude error.  This larger actual attitude 

error results in a larger attitude error EFK3 state estimate due to increased errors 𝛿𝑢 and 𝛿𝑣, which are 

shown by the corrections to 𝑢 and 𝑣 in the plots above.  In turn, this provides more attitude corrections, 
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even with the same amount of covariance between velocity and attitude error that results from similar 

wind-based accelerations.  Essentially, larger attitude errors did not provide an increased covariance and 

thus Kalman gain, but instead a larger velocity error state that was then applied to the attitude error 

estimates. 

In conclusion, the benchmark 3 results between the Dryden wind and zero wind scenarios are very 

similar.  In benchmark 3 with wind, additional observability of the pitch and yaw angle estimates is 

provided by wind-based accelerations.  Further, in both benchmark 3 simulations, additional gyro bias 

drift was used.  This extra bias drift caused larger attitude errors and a slightly faster change in the gyro 

bias estimates.  An additional increase in the amount of attitude angle corrections was identified to be 

due to this increase in error. 

6.2.4 Method 2 Analysis Summary 

In conclusion, method 2 estimates the non-attitude states ℎ, 𝑉𝑎 , 𝑉𝑔, and 𝑦𝑎𝑦very well in all benchmarks.  

Airspeed is directly measured from the airspeed sensor and 𝑦𝑎𝑦 is directly measured from the y-axis 

accelerometer.  Both of these states are estimated identically well in method 1 because the same 

method is used there.  The altitude and ground speed states, however, will suffer from errors incurred 

from integrating upon poor body frame inertial velocity component estimates, attitude estimates, and 

angular rate estimates.  Fortunately though, altitude and ground speed are directly measurable from 

GPS information, and EKF3 places large weights these relationships, so the altitude and ground speed 

estimates are corrected back to very close to their true values at each GPS measurement update.  The 

estimates for roll rate 𝑝 and pitch rate 𝑞, which are just the respective gyro inputs added to EFK3’s gyro 

bias states, track their true states well, but do deviate from their true values when EKF3 produces poor 

estimates for the gyro bias states. 
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The estimates for the attitude states 𝜙 and 𝜃 were by far the most interesting topic of discussion.  

Unlike method 1, which directly solves for these attitude angles, method 2 relies upon integration of a-

priori attitude information.  The method of this integration was found to be the cause of the vast 

majority of the increase in attitude error when Dryden wind was added to the simulations.  Poor 

estimates of the gyro rate biases were seen to cause steady state errors in the attitude estimates, but 

their effects were less in the wind scenarios than they were in the zero wind scenarios.  This reduction in 

the effect of poor gyro rate bias estimation on attitude estimation was shown to be due to increased 

amount of attitude corrections performed by EKF3 due to increased observability of the attitude angles 

in wind.  It was shown that when the aircraft experiences varying accelerations on varying axes, the 

observability of both the attitude estimates and the gyro biases improved significantly.  When that 

happened, the overall attitude error decreased significantly.   

Last, even though wind increased attitude error and gyro bias observability, and subsequently the 

amount of corrections performed by EFK3, the magnitude of the attitude errors still grew substantially 

in wind.  As mentioned, this was due to the increased integration error from equations (6.3) and (6.4).  A 

future study could look into ways to improve this integration method to reduce the additional error 

incurred in dynamic windy conditions. 
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7 Method Comparison and Future Work 

Table 7.1, below, is a numerical summary of the performance of the two methods of state estimation in 

the three different benchmarks under Dryden wind.  The table contains the mean 𝜇, standard deviation 

𝜎, and the maximum of the absolute value 𝑚𝑎𝑥𝑎𝑏𝑠 of the errors in state estimates.  The results in the 

table below were all from the simulations that included gyro bias drift, and is simply a consolidation of 

the results presented separately in earlier sections. 

Table 7.1: Method 1 and Method 2 in Dryden Wind State Estimate Error Statistics Comparison 

Benchmark  Method 1 Method 2 

  𝜇 𝜎 𝑚𝑎𝑥𝑎𝑏𝑠  𝜇 𝜎 𝑚𝑎𝑥𝑎𝑏𝑠  

1 
(straight and 

level flight) 

ℎ (𝑚)  0.009912 0.263184 1.017485 -2.29423 1.207648 5.014218 

𝑉𝑎  (𝑚/𝑠)  -0.00013 0.031237 0.280067 0.000185 0.032004 0.283372 

𝜙 (𝑑𝑒𝑔)  -2.48169 5.422106 26.76654 -8.46745 5.769247 21.90765 

𝜃 (𝑑𝑒𝑔)  -0.08141 6.245348 29.17006 -5.77646 8.164708 25.50788 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.54382 2.015224 7.948609 -0.99568 1.816456 6.935281 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56719 1.967791 7.773666 -0.51144 1.796622 7.005333 

𝑉𝑔  (𝑚/𝑠)  0.422333 0.676247 3.267293 0.971821 0.891811 4.969819 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00368 0.107917 1.100337 -0.00237 0.121143 4.727883 

2 
(coordinated 

turn) 

ℎ (𝑚)  0.008504 0.27609 1.04847 0.030457 2.323744 6.508412 

𝑉𝑎  (𝑚/𝑠)  0.000026 0.027756 0.261154 0.000179 0.026681 0.285108 

𝜙 (𝑑𝑒𝑔)  -3.41256 5.397888 25.33505 -1.79709 9.909461 22.06134 

𝜃 (𝑑𝑒𝑔)  -0.08103 6.011813 39.69093 3.551419 8.174121 25.6019 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.5443 1.881663 10.47874 -1.03095 1.851849 6.998946 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56605 1.88061 10.2309 -1.28827 1.872867 7.484872 

𝑉𝑔  (𝑚/𝑠)  0.583431 0.783121 2.861224 0.351005 0.817978 4.469241 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00369 0.106615 1.447511 -0.00322 0.116953 4.23508 

3 
(wings level 

ascent) 

ℎ (𝑚)  0.014131 0.273638 1.170085 0.828567 0.749619 1.607249 

𝑉𝑎  (𝑚/𝑠)  -2.70E-05 0.028042 0.263253 0.000444 0.071805 0.266219 

𝜙 (𝑑𝑒𝑔)  -3.71141 5.792228 26.56745 -11.7071 5.917904 22.51239 

𝜃 (𝑑𝑒𝑔)  -0.06719 6.169774 37.16324 7.48828 6.067708 14.74268 

𝑝 (𝑑𝑒𝑔/𝑠)  -1.54406 2.017114 8.126008 -1.26613 1.940041 6.221454 

𝑞 (𝑑𝑒𝑔/𝑠)  -1.56714 1.964096 7.632921 -1.67052 2.062024 7.200226 

𝑉𝑔  (𝑚/𝑠)  0.492612 0.750946 3.324215 -0.19031 0.806317 3.797198 

𝑦𝑎𝑦  (𝑚/𝑠
2)  -0.00369 0.106183 1.447511 -0.00794 0.24693 0.266386 
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This table supports the findings on the state estimation methods performance that were discussed 

separately in detail earlier in the simulation results sections.   

First, both methods obtain airspeed from a low pass filter on an airspeed sensor and side specific force 

directly from the Y axis accelerometer, and no concerning issues were observed with the estimates with 

or without wind.  The mean errors for these states are very close to zero.  Since both methods use the 

same scheme for estimating these states, the performance in estimating these states was also identical.   

Second, the errors in the estimates for the angular rates 𝑝 and 𝑞 are smaller for benchmarks 1 and 2 

with method 2 than method 1.  This is due to the tracking of the gyro biases that method 2 is able to do, 

whereas method 1 has no mechanism to track the gyro biases.  Unfortunately though, the benchmark 3 

estimate errors for the pitch and roll rates are nearly identical between methods 1 and 2.  This is 

because in the benchmark 3 simulation was short in duration, and as discussed previously, the gyro bias 

estimates for method 2 only began to track the true biases at the very end of the simulation.  This 

behavior of the method 2 gyro bias estimates could perhaps be improved in future work by adding gyro 

bias drift rate states to EKF3. 

Third, both methods 2 and methods 1 perform similarly in terms of their estimates for the ground speed 

𝑉𝑔 and the altitude ℎ.  Both methods correct their estimates to close to the values provided by the GPS 

measurements at each GPS measurement update due to the low expected noise on the GPS 

measurements.  However, both methods’ estimates for 𝑉𝑔 and ℎ quickly degrade between GPS 

measurement updates whenever the attitude angles 𝜙, 𝜃, and 𝜓 are estimated poorly.  Method 1’s 

estimates degrade less quickly than method 2’s, which is seen in the error statistics in the above table, 

and this is due to method 1’s assumption of level flight, whereas method 2 makes no assumption on the 
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motion of the aircraft.  Nonetheless, both methods’ estimates degrade in wind due to poor estimates of 

the attitude angles between GPS measurement updates, and are corrected at each GPS measurement 

update. 

Last, the estimates for the roll and pitch attitude angles 𝜙 and 𝜃 are poor for both method 1 and 

method 2 in wind.  The table above shows that both methods produce fairly similar error statistics.  

However, it should be noted that method 1 produces large errors of short duration that are a direct 

results of acceleration experienced by the aircraft, whereas method 2 produces errors from integration 

of the angular rates that aren’t quite as large in magnitude as method 1’s errors, but persist for long 

periods of time as they are slowly corrected out by EKF3.  In wind, method 2 has been shown to provide 

up to around 25 degrees of pitch angle error and 20 degrees of roll angle error.  Method 1 was shown to 

provide up to 40 degrees of pitch angle error and 25 degrees of roll angle error. 

Unfortunately, these results indicate that particular use of method 1 or method 2 for state estimation 

for autopilot control of small UAVs in wind cannot be recommended as they exist as described in this 

document.  Both methods estimate the non-attitude states fairly well in a Dryden wind field, but the 

attitude estimates incur large errors.   This poor attitude estimation performance of both estimation 

methods, and the effects of this poor attitude estimation on the states 𝑉𝑔 and ℎ, illustrate the need to 

augment or improve upon these standard methods to obtain accurate attitude estimates in wind.  There 

is a multitude of ways this could be done, some of which are identified below.   

7.1.1 Direct Attitude Sensing 

The states that are necessary for autopilot control that are consistently estimated the poorest in wind 

throughout this work are the estimates for the attitude angles 𝜙 and 𝜃. The attitude estimates from 

state estimation method 1 are poor due to the assumption that the time derivatives of the body frame 
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components of the inertial velocity vector are zero, which was required in obtain an estimate.  State 

estimation 2 estimates the attitude angles the poorest because of the integration errors associated with 

integrating on a priori data with current angular rates and lack of observability of the attitude angle 

errors.   

Measuring at least some of the attitude angles directly would be one way to reduce these errors. 

Unfortunately though, direct attitude sensing can be difficult in implementation, depending on what 

mechanism to sense attitude is used.  For example, magnetometers are subject to magnetic interference 

from the surrounding aircraft materials and horizon sensors are subject to visibility of the ground.  

Nonetheless, if attitude is successfully measured, it can be added to either method presented here.  

Most notably though, it can be easily added to method 2 by adding 𝑛 attitude angle measurements as a 

third set of measurements to EKF3 as is shown below.  

 𝒚𝐸𝐾𝐹3𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝝐𝐼𝑀𝑈−𝐺𝑃𝑆,𝑘 =

[
 
 
 
 [𝒑𝐵/𝑁,𝑘]
𝑁

𝐼𝑀𝑈

[𝑽𝐵/𝑁,𝑘]
𝐵

𝐼𝑀𝑈

𝝍𝐼𝑀𝑈 ]
 
 
 
 

−

[
 
 
 
 [𝒑𝐵/𝑁,𝑘]

𝑁

𝐺𝑃𝑆

𝑹𝐵𝑁(𝜓𝑘,𝐼𝑀𝑈) [𝑽𝐵/𝑁,𝑘]
𝑁

𝐺𝑃𝑆

𝝍𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 ]
 
 
 
 

 (7.1) 

 
𝜕𝑯𝐸𝐾𝐹3𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑

𝜕𝒙𝐸𝐾𝐹3𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑
= [𝑰6+𝑛𝑋6+𝑛 𝟎6+𝑛𝑋9−𝑛] (7.2) 

However, it would also have to be recalled that the expected measurement noise 𝑸𝐸𝐾𝐹3𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑  would 

have to have the expeted sensor noise of the attitude sensors added to it, like below. 

𝑸𝐸𝐾𝐹3𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑸𝐸𝐾𝐹3 +

[
 
 
 
 
 
06𝑥6 06𝑥1 06𝑥1 06𝑥1 06𝑥6
01𝑥6 𝜎𝜙

2 0 0 01𝑥6

01𝑥6 0 𝜎𝜃
2 0 01𝑥6

01𝑥6 0 0 𝜎𝜓
2 01𝑥6

06𝑥6 06𝑥1 06𝑥1 06𝑥1 06𝑥6]
 
 
 
 
 

 (7.3) 
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Off-diagonal terms of this noise matrix may also be needed if the noise is coupled across the different 

attitude angle measurements. 

7.1.2 Replace Integration Method in State Estimation Method 2 

The method 2 results presented in this work show that the majority of the error that increase in attitude 

error seen in wind is due to the method of numerical integration.  In zero wind, using true angular rates 

and attitude states with the same integration method resulted in nearly zero error, while doing so in 

wind showed that using true states reduces the amount of attitude error by at most 25%.  In wind, the 

aircraft experiences higher frequency dynamics that this state estimation method was unable to account 

for, thus resulting in increased attitude estimation error.   It is possible that a higher order integrator, 

such as a 4th order Runge-Kutta integrator, could introduce a much smaller attitude error across IMU 

updates and thus a smaller attitude estimate error.  Other techniques, such as interpolating gyro and 

accelerometer sensor data between updates, may also yield a reduction in attitude estimate error.  

7.1.3 Parallel Estimators  

Another way to improve the attitude estimates could be to add assumptions on the flight of the aircraft 

when providing corrections to the IMU estimates of method 2.  This could be done by essentially 

running a method 1 state estimator alongside of a method 2 state estimator.  By running both, the best 

features of both methods could be taken advantage of.  For example, because method 2 makes no 

assumptions on the flight dynamics of the aircraft, the error incurred in the attitude estimates only 

grows over long periods of time.  Method 1 provides good attitude estimates when the time derivatives 

of the body frame components of inertial velocity vector are close to zero.  Thus, when the IMU 

estimates those derivatives to be close to zero, per equation (6.4), or when the specific force is 

measured by the accelerometers to be close to the expected gravity vector, the method 1 estimates 
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could be used as an attitude measurement in EFK3.  Nonetheless, this is simply a suggestion and care 

would have to be taken to ensure that the IMU estimates are not corrected to poor estimates. 

This list of possible improvements is by no means intended to be a complete list.  Rather, it is a list of 

improvements that were immediately apparent from performing the work documented here, and is 

intended to be a starting point for readers interested in improving upon these state estimation 

methods.  

8 Conclusion 

This research has analyzed the performance of two commonly used methods of state estimation for 

autopilot control of small UAVs in windy conditions.  It was first shown that the set of six states 

ℎ 𝑝 𝑞 𝜙 𝜃  𝑉𝑎  𝑉𝑔 𝑦𝑎𝑦   is sufficient for tracking a commanded course rate, altitude, and airspeed in windy 

conditions.  Both of the state estimation methods analyzed here estimate a superset of these states, but 

only the estimator’s performance in estimating these states was heavily scrutinized. 

The results of the simulations of these two methods of state estimation in wind show that use of either 

of these state estimation methods in wind cannot be recommended.    Instead, these results show that 

future work is necessary to enhance these estimation methods to achieve increased state estimate 

accuracy, especially for the roll and pitch angles 𝜙 and 𝜃.  Nonetheless, this work has fulfilled its 

purpose by contributing knowledge of exactly why the observed behavior of both methods in wind 

occurs.  These findings are summarized below. 

Both methods obtain airspeed from a low pass filter on an airspeed sensor and side specific force 

directly from the Y axis accelerometer, and no concerning issues were observed with the estimates with 

or without wind.  Method 1, which solves directly for attitude using gyro and accelerometer inputs, 
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suffered steady state bank angle errors when gyro bias drift was added to the simulation and during 

coordinated turns, and also suffered steady state pitch angle errors during climbs.  These errors that 

were seen without wind were shown to be due to the assumptions made in the development of the 

method’s attitude determination process.   The ground speed estimate was also shown to degrade when 

gyro bias is present due to EKF2’s inability to account for gyro bias drift.  When wind was added to the 

simulation, the only difference was that the variations in the pitch and bank angle estimates became 

much larger in all benchmarks.  This was shown to be due to the assumption that the body frame 

components of the inertial velocity vector are constant, which is certainly not the case in wind. 

Method 2 integrates upon a-priori attitude and translation data to determine the current attitude and 

translation states, and then attempts to correct both the translation and the attitude estimates with GPS 

measurements.  It was shown that while the ground speed and altitude errors are corrected well by 

EKF3 with GPS data in all benchmarks, attitude estimates were only corrected well when gyro bias or 

wind were not present.  Both gyro bias and wind increased the error introduced into the attitude 

estimates by the IMU integration, but EFK3 was still able to keep the attitude solutions bounded in all 

cases.  It was shown that the increase in error seen in wind was due to the integration of the angular 

rates performed from the IMU measurements. Future work could explore improving upon the 1st order 

integration method that was used to here to achieve smaller attitude error.  However, without direct 

attitude measurements, method 2 still exhibits poor observability of both the attitude angles and sensor 

biases in benchmarks that don’t involve wind or significant maneuvering.  It was shown that there are 

always at most 2 observable attitude and gyro bias modes, and because in standard aircraft flight X and 

Y accelerations are minimized, the unobservable modes are about the Z axis.  However, it was also show 

that by performing significant maneuvers or by being perturbed by a Dryden wind field, the 

unobservable mode can be dynamically changed and thus share observability amongst all axes and thus 

attitude angle errors. 
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Overall, this research has provided an in-depth understanding of the changes in performance of the two 

most common methods of state estimation for small UAVs when the aircraft is subjected to a Dryden 

wind field.  This understanding will assist future research to improve upon small UAV state estimation 

methods so that the states necessary for autopilot control can be well estimated in wind. 
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